ASSESSMENT AND IMPROVEMENT OF PROCESS VARIABLE
REPRODUCIBILITY IN COMPOSTING REACTORS

P. D. Schloss, L. P. Walker

ABSTRACT. The high variability found in experimental measurements of composting state variables is the major factor that
limits detection of statistically significant relationships between experimental treatments. The use of statistical techniques,
such as analysis of variance (ANOVA) and power analysis, have proven to be powerful methods for assessing the effects of
experimental variability on the ability to detect statistically significant differences between treatments. In two previous
studies, nested ANOVAs and power analyses were used to test the effects of mixing and microbial inoculation on the biological
activity in composting reactors as measured by temperature. The primary conclusion from these studies was that
within—treatment variability limits the ability to detect statistically significant differences. In addition, it was shown that by
controlling initial microbial populations in composting reactors, it is possible to increase process rveproducibility. In this
article, the results of the two previous studies are synthesized with the aid of sensitivity analyses using empirical mathematical
models to describe the effects of temperature and moisture content on process behavior. Finally, a simulated power analysis
was performed using the data from an inoculum study to address the effects of variability on experimental design. Combined
with power analysis, the sensitivity analysis further demonstrates the great need for improved process reproducibility in the
field of composting at both the research and application levels.
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wastes is in periodically mixed windrows. According to state
law, the temperature of the composting waste must be
maintained above 55°C for at least 15 consecutive days (New
York State Department of Environmental Conservation,
1996). If temperatures vary by more than 15°C between
replicates, it becomes more difficult to reproducibly comply
with these regulations. Finally, as will be demonstrated in this
article, even small differences in temperature and moisture
content may manifest themselves as large differences in
process performance.

The main goal of the current study was to further analyze
the results, specifically the degree of variability, found in
earlier studies using a power analysis and mathematical
models. This analysis was then used to determine which
avenues of research are most appropriate for improving the
experimental design of composting studies and field—scale
implementation. Finally, suggested tolerance levels for
variability are proposed to address the problem of statistical
reproducibility.

MATERIALS AND METHODS
REACTOR DESCRIPTION

In the two previous studies, 30 L bench—scale composting
reactors made of schedule 40 PVC pipe were used (Schloss
et al., 2000; Schloss and Walker, 2000). Big Red puppy food
(Pro—Pet, Inc., Syracuse, N.Y.) was mixed with maple wood
chips (Coastal Lumber, Cayuta, N.Y.) to obtain a C:N ratio
of 18:1 and loaded into the reactors in order to achieve a dry
bulk density of approximately 280 kg/m3. The initial
moisture content of the loaded synthetic food waste (SFW)
in all experiments was 55% (w.b.). The contents of the
reactors were aerated with water—saturated air at a flow rate
of 5.25 L min~!. For each study, two experimental replicates
were performed sequentially. Within each experimental
replicate, each treatment addressed in the study was
replicated twice. Therefore, each treatment was replicated
four times. The four treatments used in the first study
included reactors mixed every 24, 96, and 192 hrs and
reactors that were left unmixed. The treatments in the second
study included reactors that used tap water as the sole source
of moisture, while in the inoculated reactors, 25% of the
initial moisture in each reactor was from primary wastewater.
Further details of the reactor design, substrate preparation,
data acquisition, sampling methodology, and experimental
design have been described elsewhere (Hall et al., 1995;
VanderGheynst et al., 1997; Schloss et al., 2000; Schloss and
Walker, 2000).

STATISTICAL ANALYSIS

Because of the two experimental replicates within each
study, a nested analysis of variance (ANOVA) was used to test
the differences in temperature and moisture content for each
treatment within the same study. This method of statistical
analysis will be briefly reviewed because it is described in
detail elsewhere (Sokal and Rohlf, 1995; Schloss et al., 2000;
Schloss and Walker, 2000). In order to simplify the analysis
and determine the effect of each treatment on temperature
and moisture, the time profile for each variable was
segmented into 12—hr periods. The two hours prior to the
end—point of each period were used for data acquisition, and
the nested ANOVA was performed for single heights in the
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reactor. In addition to this first set of data, a second analysis
was done for each study in which the effects of each treatment
on spatial gradients within a reactor were tested. As in the
first analysis, the data were segmented into 12-hr periods, but
the second analysis required temperature and moisture data
from all height positions in the reactor for a single treatment.
If differences between treatments or positions in the reactor
were detected, then Tukey’s least significant difference
technique was used to limit compounding of the Type I error
(Sokal and Rohlf, 1995).

The above methods of analysis were used for both studies,
and the results are reported in detail in Schloss et al. (2000)
and Schloss and Walker (2000). In addition to the ANOVA
and Tukey’s tests, a power analysis was performed in the
second study. Power is the probability of detecting a
statistically significant difference that actually exists.
Typically, researchers are content with a power of 0.80, also
expressed as 80%. This is interpreted as meaning that if a
difference exists and an experiment is repeated 10 times, then
the difference will be detected 8 of those times. Power is a
function of the difference being tested (), the variability
among replicates (02), the number of replicates (n), and the
method of testing the statistical hypothesis. These parameters
are used to calculate the non—central parameter (¢p2), which
describes the difference between the distribution of a
randomly occurring population and the distribution
representing the data used in the analysis:

¢2 =V MStreat -1 1)
Msexper
where

¢? = non—central parameter

vy = degrees of freedom used for MSy;e,

MSiecat = sum of the mean—squared error among
treatments

MSxper = sum of the mean—squared error among
experiments.

To perform the power analysis, it was necessary to vary
to determine the ability of the ANOVA to detect different
effect sizes between any two treatments. The expression used
to calculate MSy, Was rewritten so that 0 equaled twice the
difference between the mean of one treatment and the mean
for all the data combined:

nb
MSyeat = ESZ 2

where b = the number of experimental groups (b = 2 for both
studies).

Using the values from equations 1 and 2, the power was
calculated as demonstrated by Lindman (1991):

Power= Pr{F"V2) < F] 3)

where

F’ = value of the non—central F distribution

F = ratio of the MSirear and MSexper terms

v’ = first degree of freedom for use with non—central F

distribution

v, = degrees of freedom for the MSeyper term.

The MScxper terms were calculated in this study using the
SPSS computer package (SPSS, Inc., Chicago, Ill.). The
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power analyses were performed using an Excel 97
spreadsheet (Microsoft, Redmond, Wash.).

MATHEMATICAL MODELS USED IN ANALYSIS

Using SFW, Richard and Walker (1998) proposed a
kinetic model describing the relationship between tempera-
ture and rate of CO; evolution. Their model is based on the
Cardinal Temperature Model with Inflection (CTMI)
proposed by Rosso et al. (1995):

RCOZ = [Rcoz,opt(T_TmaxXT_Tmin)z]
+{(Topt_ min)[(Topt_ min)(T_Topt)

~(Topt~TmaxXTopt + Tmin— 2D} 4

where
Rcoz  =rate of CO; evolution (g CO, X kg initial
volatile solids~! X d-1)

Reoo, opt = maximum rate of CO; evolution (g X kg x
d!

Tmin = temperature at minimum rate of CO, evolution
O

Topt = temperature at optimum rate of CO, evolution
(9]

Trax = temperature at maximum rate of CO; evolution
°0).

Table 1 lists the values and standard deviations of these
parameters, as reported by Richard and Walker (1998).

For purposes of a sensitivity analysis, the derivative of
equation 4 was taken with respect to temperature (T) and
expressed as follows:

dRCQ2 _ [(T—Tmin)"' 2(T = Tpax)
Reo, | (T=Tia)(T—Typiy)

®)

3 Topt —2Timax = Tmin
(Topt ~Tnin )(T - Topt )_ (Topt - Tmax)(Topt + Tinin— ZT)

dT

This sensitivity analysis will be used to predict the effect
of variation in temperature on predicted process perfor-
mance. For example, by varying dT, it is possible to
determine the percent change in the rate of CO; evolution for
a given temperature.

According to Haug (1993), the rate of substrate
degradation can be modeled as a function of Ry using
various correction factors for sub—optimal levels of moisture,
oxygen, and porosity. In this study, only the moisture—based
correction is analyzed because this was the only variable of
the three that was substantially below optimal levels in our

Table 1. Parameter values calculated by Richard
and Walker (1998) for equations 4 and 5.

Parameter Estimate Std. Dev.
Reop, opt (gkg™! d1) 178 37
Tmin (°C) 5 N.A.
Topt (°C) 58.6 5.6
Tmax (°C) 71.6 5.7
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previous two studies. The moisture correction factor (fyz0)
was derived by Haug (1993) as a means of expressing the
effects of moisture demonstrated experimentally by others.
While the model is generally inaccurate above 60% (w.b.), its
use to predict process performance at lower moisture
contents has been validated in three previous studies
(Schulze, 1961; Snell, 1957; Jeris and Regan, 1973):

11,0 = lexp(-17.684M yp +7.0622)+ 11! (6)
where

fino = fraction of maximum uptake rate

My, = moisture content (w.b., fraction).

The correction factor (fi0) is the ratio of the rate of CO,
evolution at the given moisture content and temperature to
the rate of CO; evolution at the optimal moisture content and
the given temperature.

In order to perform a sensitivity analysis to determine the
effect of variation in moisture content on errors in predicting
process performance, equation 6 was differentiated with
respect to Myy, yielding the following equation:

dfH,0  17.684exp(-17.684M 1, +7.0622)

(M
fr,0  exp-17.684M,,+7.0622)+1

wb

Similar to equation 5, by varying the dMyy, it is possible
to determine the percent change in process performance, as
measured by fip0, at any given moisture content.

RESULTS AND DISCUSSION
EMPIRICAL DESCRIPTION OF VARIABILITY

Figures 1 and 2 reveal large differences in temperature and
moisture content between mixed and unmixed reactors that
were not statistically significant. The vertical bars in each
figure denote points in the experiment where statistically
significant differences were detected (p < 0.05). Statistically
significant temperature differences were only detected
between treatments in the mixing study. These bars do not
appear at some of the largest gaps between treatments for
temperature and moisture content. The reason for this
inability to detect statistically significant differences when
they actually exist lies in the high levels of variation between
reactors within treatments. Consequently, only those
between—treatment differences that were located in regions
in which there was small within—treatment variability were
actually statistically significant.

In addition, important conclusions were drawn from the
comparison of data for a single treatment within and between
experimental groupings. While most composting studies fail
to use multiple replications or statistical procedures to assess
differences between treatments, the replication applied to
this study demonstrated the large variability between a set of
composting reactors operated under the same treatment
conditions. For example, the temperature data shown in
figure 3 were recorded at 30 cm above the reactor floor in the
unmixed reactors. These profiles represent the tremendous
variation typically found in composting studies. Similarly,
figure 4 demonstrates the high levels of variability found in
moisture content data. This figure represents the moisture
content measured at 10 cm above the floor of each reactor in
four replicate unmixed reactors from the first study. While
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Figure 1. Comparison of average temperatures taken at 30 cm in reactors
mixed every 24 hrs and those left unmixed. Vertical bars denote times at
which statistically significant differences were detected between any of
the four treatments.
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Figure 2. Comparison of average moisture contents taken at 10 cm in
reactors mixed every 24 hrs and those left unmixed. Vertical bars denote
times at which statistically significant differences were detected between
any of the four treatments.

there is high variability throughout the process, the
variability appears to increase once drying commences.
Failure to detect differences between two treatments can
be attributed to two scenarios: either there was no “true”
difference, or there was not enough statistical power to detect
differences that actually existed. In order to determine which
of the two scenarios holds for these studies, the power to
detect differences of 5, 10, and 15°C, as well as differences
of 5, 10, and 15 percentage points (w.b.) between treatments,
was calculated for each height and time point. As shown in
table 2, there were median power values of 0.06, 0.13, and
0.36 to detect differences of 5, 10, and 15°C, respectively, at
30 cm above the reactor floor in the mixing study. Median
power values to detect moisture content differences of 5, 10,
and 15 percentage points (w.b.) were 0.07, 0.28, and 0.63,
respectively (table 3, power values for both variables from
the mixing study have not been previously published).
Temperature results are presented from 30 cm because this
elevation was the hottest point in the reactor, while moisture
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Figure 3. Decomposition of the curve representing the average
temperature experienced in an unmixed reactor at 30 cm (in Figure 1) into
the four replicate profiles.

60 .:_..-'-._;-\\ !
kY
LY

50 By —e— Experiment 1, Trial 1
- ‘|. ==7=— Experiment 1, Trial 2
g8 ‘."-_ ----¥---- Experiment 2, Trial 1
S 5 = =4 == Experiment 2, Trial 2

40
NS
3
=
c
8 30 F ]
€
o
(&)
o
5 20 | ]
2
k]
o
=

10 | ]

0
0 100 200 300 400
Time ( hr)

Figure 4. Decomposition of the curve representing the average moisture
content experienced in an unmixed reactor at 10 cm (in figure 2) into the
four replicate profiles.

content results are presented because this region dried the
fastest.

Comparison of the power values from the inoculum study,
the mixing study, and those calculated from Michel et al.
(1996; Schloss and Walker, 2000), revealed that the greatest
observed statistical power to detect differences in
temperature and moisture content was in the inoculum study
(tables 2 and 3). However, these values are still not ideal for
sound experimental design. The inoculum study data
presented in figure 5 show that, while there are a few
physically significant differences, they remain undetectable
due to the limited power to detect differences. Because of the
obvious limits in detecting differences, it is not possible to
conclude, with confidence, that the statistically significant
differences detected are the only true differences present in
these studies.

EFFECTS OF MIXING AND INOCULATION ON STATISTICAL
POowER

The issue of the effects of mixing and inoculation on
experimental design was further analyzed through another
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Table 2. Results of power analysis using temperature data taken at 30 cm and showing the number of tests that had an observed statistical
power for a given range to detect three effect sizes using data from the mixing (Schloss et al., 2000), inoculum (Schloss and Walker, 2000),
and Michel (Michel et al., 1996) studies (e.g., 2 of 33 ANOVAs had a statistical power between 0.60 and 0.69
when attempting to detect a 5°C difference at 30 cm in the mixing study).

Small Effect Size 5°C Difference

Medium Effect Size 10°C Difference

Large Effect Size 15°C Difference

Statistical

Power Mixing Inoculum Michel Mixing Inoculum Michel Mixing Inoculum Michel
0.99— 2 1 2 3

0.95-0.98 1 5

0.90-0.94 1 1

0.80-0.89 1 4 1 2 3
0.70-0.79 2 3 1
0.60-0.69 2 1 1 3 2 6
0.50-0.59 2 3 4 2 5
0.40-0.49 3 3 4 3 4
0.30-0.39 5 1 1 7 4 3 3
0.20-0.29 3 7 5 9 3 7

0.10-0.19 2 6 3 9 10 3 7 2

0.05-0.09 29 19 19 12 4 4 2

N 33 35 22 33 35 22 33 35 22
Mean 0.099 0.177 0.081 0.214 0.395 0.307 0.497 0.568 0.600
Median 0.06 0.08 0.08 0.13 0.27 0.30 0.43 0.51 0.60
St. Dev. 0.14 0.18 0.01 0.24 0.30 0.10 0.38 0.317 0.16
% > 0.80 0.0 2.9 0.0 6.1 17.1 0.0 12.1 314 13.6

Table 3. Results of power analysis using moisture content data taken at
10 cm and showing the number of tests that had an observed statistical
power for a given range to detect three effect sizes in the mixing
(Schloss et al., 2000) and inoculum (Schloss and Walker, 2000)
studies (e.g., 13 of 17 ANOVAs had a statistical power between
0.05 and 0.09 when attempting to detect a 5% (w.b.)

difference at 10 cm in the mixing study). o
o
Small Effect Medium Effect Large Effect - ]
Size Size Size £
5% w.b. 10% w.b. 15% w.b. ®
. . g 5 R
Statistical Difference Difference Difference g_
Power Mixing Inoculum  Mixing Inoculum Mixing Inoculum ° i
0.99- ! ! 3 2 8 =—@— No Inoculum
0.95-0.98 1 2 2 10 F ===#= Inoculum ]
0.90-0.94 1 3
0.80-0.89 1 4 3 1 0
0.70-0.79 2 1 2 1 1 0 100 200 300 400
0.60-0.69 1 1 3 1 1 .
0.50-0.59 2 I Time (hr)
0.40-0.49 1 3 1 1 Figure 5. Comparison of average temperatures taken at 30 cm in
0.30-0.39 3 1 1 inoculated and non-inoculated reactors. No statistically significant
020-029 1 5 2 1 1 1 differences were detected between the two treatments. Potential
0.10-0.19 2 2 1 3 physically significant differences are contained within the rectangular
0.05-0.09 13 2 7 3 reglons.
N 17 18 17 18 17 18 While mixing may have a beneficial effect on the process,
Mean 0.166 0.372 0.341 0713 0.540  0.870 considering the intervals between mixing tested, mixing
lg/lelean g‘?z g‘; é g§§ g;i g‘g’z 8‘28 should not be considered as a method of improving
t. Dev. : i : ) : : experimental design. However, comparison of power values
%>0.80 0.0 5.6 11.8 50.0 41.2 77.8

power analysis. In this analysis, the ability to detect spatial
differences within a given treatment was determined. Using
the data from the mixing study (Schloss et al., 2000), the
median power values to detect spatial differences of 5, 10,
and 15°C was 0.08, 0.31, and 0.63, respectively, in unmixed
reactors, while in reactors mixed every 24 hrs the values were
0.07, 0.20, and 0.45, respectively. The power values for
unmixed reactors and those mixed every 24 hrs are presented
in table 4. When considering the other intervals between
mixing in this analysis, there was no discernable relationship
between frequency of mixing and power (data not presented).

Vol. 44(4): 10221030

from inoculated and non—inoculated reactors showed that
inoculation resulted in improved statistical power (table 4).
This analysis provided evidence that the addition of an
inoculum increased the ability to detect differences in a
hypothesis test (Schloss and Walker, 2000). In addition, the
power analysis suggested that the lower—than—desired
statistical power found in the previous hypothesis tests may
have been reduced because non—inoculated reactors were
used. Future experiments using an inoculum in all reactors to
test the effect of a separate treatment would probably obtain
greater statistical power because the variability introduced
by non—inoculated reactors would be absent.
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Table 4. Results of power analysis using temperature data for selected treatments and showing the number of tests that had an observed statistical
power for a given range to detect three effect sizes in the mixing (Schloss et al., 2000) and inoculum (Schloss and Walker, 2000) studies (e.g., 1 of
35 ANOVASs had a statistical power greater than 0.99 when attempting to detect a 5°C difference across the bed of an inoculated reactor).

Small Effect Size Medium Effect Size Large Effect Size

.. 5°C Difference 10°C Difference 15°C Difference
Statistical
Power Unmixed 24 h Inoculum No Inoculum Unmixed 24 h Inoculum No Inoculum Unmixed 24 h Inoculum No Inoculum
0.99— 1 1 6 2 2 3 11 3 7 9
0.95-0.98 1 1 2 1 4 1 1
0.90-0.94 1 2 2 2 2 9 1
0.80-0.89 1 1 3 2 3 2 1
0.70-0.79 2 1 1 1 1 5 2 1
0.60-0.69 2 1 7 1 2 1 4 2
0.50-0.59 1 1 2 4 2 1 2 1 3 5
0.40-0.49 2 1 4 1 3 2 1 2 5 2
0.30-0.39 1 2 1 1 3 3 4 3 4 3 2 7
0.20-0.29 2 1 3 3 2 6 7 6 4 3
0.10-0.19 3 6 10 2 7 6 4 10 3 5 1 3
0.05-0.09 19 22 17 24 6 10 2 4 3 1 1
N 33 33 35 35 33 33 35 35 33 33 35 35
Mean 0.239 0.150 0.194 0.202 0.455 0.335 0.490 0.407 0.617 0.522 0.721 0.580
Median 0.08 0.07 0.10 0.08 0.31 0.20 0.43 0.24 0.63 0.45 0.78 0.52
St. Dev. 0.27 0.21 0.22 0.24 0.38 0.30 0.29 0.36 0.33 0.34 0.27 0.31
% >0.80 6.1 6.1 5.7 0.3 333 12.1 20.0 25.7 42.4 242 48.6 314

While there appear to be relationships that may be drawn
from these two studies using temperature data, the situation
is more confusing when one analyzes the power values
resulting from moisture content data. Table 5 summarizes the
results presented in Schloss and Walker (2000), as well as the
power values calculated from the data of Schloss et al.
(2000). Based on the results from the mixing study, mixing
appears to improve the ability to detect differences in
moisture content across the bed of the reactor. However, the
difference between each of the mixed treatments is small, and
there is not enough information to determine if there is a trend
relating the interval between mixing to statistical power. At
a gross level, mixing improves the power to detect
differences in moisture content. According to the power

Table 5. Results of power analysis using moisture c

tent data for sel

values reported in the inoculum study (Schloss and Walker,
2000), inoculation decreases the ability to detect differences
in moisture content. There is not a clear explanation for why
inoculation improves temperature reproducibility but
increases variability in moisture content.

MEANING OF PHYSICALLY SIGNIFICANT DIFFERENCES

This article and our previous studies have focused on the
ability to detect temperature differences of 5, 10, and 15°C,
as well as differences in moisture content of 5, 10, and
15 percentage points. Previous discussion of these values has
centered on the biological meaning of the differences. For
example, a difference of 15°C would differentiate between
mesophilic and thermophilic temperatures. In addition,

ted treatments and showing the number of tests that had an observed

statistical power for a given range to detect three effect sizes in the mixing (Schloss et al., 2000) and inoculum (Schloss and Walker, 2000)
studies (e.g., 3 of 18 ANOVAs had a statistical power between (.70 and 0.79 when attempting to detect
a 15% (w.b.) difference across the bed of an inoculated reactor).

Small Effect Size

o .
Statistical 5% w.b. Difference

Medium Effect Size
10% w.b. Difference

Large Effect Size
15% w.b. Difference

Power Unmixed 24 h Inoculum No Inoculum Unmixed 24h Inoculum No Inoculum Unmixed 24 h Inoculum No Inoculum
0.99— 1 3 1 2 4 4 6
0.95-0.98 1 2 2 1 1 5
0.90-0.94 1 2 1 1
0.80-0.89 1 1 2 2 1 2
0.70-0.79 1 1 3 1 3

0.60-0.69 1 3 1 2 1
0.50-0.59 1 1 2 2 1
0.40-0.49 1 2 1 1 1 1

0.30-0.39 1 2 1 1 4 1 1 6

0.20-0.29 1 2 3 1 1 2 2 3 1
0.10-0.19 2 2 5 3 7 4 4 3 1 1
0.05-0.09 14 13 1 4 10 4 2 2 5

N 17 17 18 18 17 17 18 18 17 17 18 18
Mean 0.077 0.224 0.202 0.270 0.188 0.336  0.456 0.650 0.325 0476 0.657 0.833
Median 0.06 0.07 0.09 0.20 0.08 0.14 0.39 0.70 0.18 034 073 0.96
St. Dev. 0.04 031 0.25 0.21 0.20 0.37 0.33 0.30 0.31 0.32 0.32 0.27
% > 0.80 0.0 11.8 5.6 5.6 0.0 23.5 27.8 333 17.6 235 38.9 77.8
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according to the discussion provided by Haug (1993), a
moisture difference of 15 percentage points would cause the
moister material to degrade faster than the drier material.
This justification provides an empirical method of
determining when physically significant differences exist.
However, application of a sensitivity analysis using
mathematical models would strengthen the rationale for the
differences that are tested for in the power analyses.

Using the CTMI model (eq. 4) implemented by Richard
and Walker (1998) and equation 5, figure 6 was constructed
by evaluating equation 5 when dT equaled 1, 5, 10, and 15°C.
Based on figure 6, if two sets of reactors are 1, 5, 10, or 15°C
different at a given time, then one could determine what
effect this difference had on the rate of CO, evolution, a
parameter directly related to the rate of substrate
degradation. For example, if two reactors were statistically
60°C, but actually differed by 10°C, then the rate of CO,
evolution in the two reactors would differ by 41.4%.

Several important trends are suggested in figure 6. First,
the percent difference in the rate of CO; evolution increases
as the temperature difference increases. Second, the change
in the percent difference in the rate of CO, evolution
increases with respect to temperature. Finally, even small
differences of 5°C can result in large differences in the rate
of CO; evolution (33.1%).

Based on the limitations of instrumentation and the
sensitivity analysis, it is suggested that future power analyses
focus on reporting the power to detect differences of 1, 5, and
10°C. It is apparent that differences of 10°C must be reliably
detected because they can result in large variations (66.3%)
in the rate of substrate degradation. The difference of 1°C is
suggested because it is the lowest temperature difference that
can be reliably detected with a traditional data acquisition
system (Hall et al., 1995). At this point in the development
of methods in the field of composting research, an acceptable
goal would be to pursue methods for obtaining power values
above 0.80 for detection of 10°C temperature differences in
75% of the tests. Another goal would be to obtain power
values above 0.80 to detect temperature differences of 5°C
for 40% of the statistical tests.
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Figure 6. Graphical representation of equations 4 and 5 as functions of

temperature and dT. Shaded region represents those temperatures

experienced in the reactors used in the mixing (Schloss et al., 2000) and
inoculum (Schloss and Walker, 2000) studies.
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Equations 6 and 7 are plotted in figure 7 as a function of
the percent moisture content (w.b.) using dMy, values of 1,
5, 10, and 15 percentage points. It is important to note that,
while equation 4 was evaluated by Richard and Walker
(1998) using the same substrate as in the mixing and
inoculum studies, equation 6 was developed based on studies
that used municipal solid wastes and biosolids (Haug, 1993).
While the values of fipo predicted by equation 6 are probably
not the same as would be predicted using SFW, the shape and
functional dependence of the curve with respect to moisture
content is most likely accurate for moisture contents below
60%. An additional problem with equation 6 is that
maximum fi,0 is predicted when the moisture content of the
substrate is 100%. This is not valid, as it has been observed
that excessive moisture limits mass transfer of O, through the
composting matrix and limits rates of degradation (Miller,
1989). However, the predicted fipo values for the actual
moisture content range experienced by the substrate in the
two previous studies, as denoted by the shaded box in
figure 7, are within the boundaries of the values used by Haug
(1993) to develop the model. Despite the limitations of this
model in describing the functional relationship between
moisture content and fyy0, the model is reasonable for the
illustrative purposes of a sensitivity analysis.

It is clear from figure 7 that small differences in moisture
content result in large differences in the variation of fio.
Variation in moisture content has the smallest effect on the
variation of the rate of CO, evolution at high moisture
contents, while at lower moisture contents the variation in
CO; evolution is much more pronounced. For purposes of
discussion, if a composting reactor is considered inactive
when the rate of CO, evolution is 20% of its optimal rate for
the given temperature, then the moisture content range of
interest can be further limited to those values between 30%
and 55% (w.b.). Even within this limited range, the error in
predicting the rate of CO;, evolution is large compared to
relatively small differences in moisture content. In order to
limit the error in predicting fioo to 20% across all moisture
contents, the difference between two moisture contents must
be below 1 percentage point. Figure 4 demonstrated that the
variation in moisture content increases as time progresses
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Figure 7. Graphical representation of equations 6 and 7 as functions of
moisture content and dM. Shaded region represents those moisture
contents experienced in the reactors used in the mixing (Schloss et al.,
2000) and inoculum (Schloss and Walker, 2000) studies.
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through the process. Because of this, variation has the largest
effect on process performance when the bed is driest. This
means that when the reactor bed is approaching the inactive
phase, differences as small as 5 percentage points can cause
errors in predicting the rate of CO; evolution by about 75%.
In other words, if it is not possible to differentiate between
two reactors that have moisture contents that differ by
5 percentage points, then one reactor may be inactive while
the other is highly active.

An additional difficulty in the analysis of moisture content
is the method of data acquisition. It has previously been
demonstrated that in a mixture of dog food and wood chips,
moisture is primarily accumulated in the wood chips
(Baker et al., 1997). Therefore, when comparing multiple
samples, it is necessary to ensure that each sample is
representative of other samples and of the location in the
reactor from which the sample was taken. This is impossible
given the sensitivity the process shows to changes in moisture
content. Because it is realistic to expect the sampling
procedure to be accurate to within 2.5 percentage points, it is
difficult to interpret the meaning of moisture content data in
light of this sensitivity analysis. It is suggested that future
power analyses attempt to detect differences of 2.5, 5, and
10 percentage points. Based on the limitation of the
analytical methods, it is also suggested that new methods be
developed that allow for precise in situ measurements of
moisture content.

EFFECT ON EXPERIMENTAL DESIGN

From the data presented in this study, it is clear that even
small levels of variation have a large effect on the ability to
detect physically significant differences and the degradation
activity throughout the process. Possible factors causing
reduced power include too many treatments, limited
replication, small number of observations, or the lack of

control for salient variables. Each power—limiting factor will
be evaluated in an attempt to suggest further avenues of
research for improved experimental design. Particular
attention will be paid to attempts to detect differences of
10°C with a power of 0.80 in 75% of the statistical tests.

Table 6 contains the results of several simulations that
used MSexper values reported by Schloss and Walker (2000,
see their fig. 5) to determine the power to detect differences
of 10°C. The data used were from ANOVAs attempting to
detect differences across the bed of inoculated reactors.
These data represent the least-variable experimental
condition thus far reported in composting research.

This type of simulation is important because if researchers
know what effect size is physically meaningful and the
variability associated with the data, then they can implement
an experimental design to obtain a specific power. For
example, if one wanted to reliably detect 10°C differences
with a power of 80%, then the shaded cases in table 6 would
be acceptable. If only one reactor is available for each
treatment, then the experiment grouping would need to be
repeated at least ten times to have sufficient power in a two—
or four—treatment study. If the number of reactors
representing each treatment were increased to two, then the
number of experimental groupings required would reduced.
However, more than four groupings would be necessary.

Another situation to consider is when the number of
experimental grouping replications is limited. If one is
limited to two groupings, then it would be necessary to run
10 replicate reactors per treatment and experimental
grouping. Again, as the number of reactors used decreases,
the number of groupings required increases, and vice versa.
In the mixing study, four treatments were evaluated. This
analysis shows that the statistical tests in that study would
have possessed more power to detect differences if only two
treatments were addressed. In hindsight, it would have been

Table 6. Results of power analysis simulation using inoculated reactor data used to construct figure 5 of Schloss and Walker (2000).
The shaded blocks represent cases in which at least 75% of the statistical tests obtained a power greater
than 0.80 when attempting to detect differences of 10°C or less.

Reactorslal: 1 2 4 10

Exptlb] Treatments(cl: 2 4 6 2 4 6 2 4 6 2 4 6

2 Mean 036 028 023 053 046 041 071 0.67  0.64 089 089 087
Median 029 017 010 050 039 030 075 072 0.67 097 098 099
% > 0.80 8.6 8.6 5.7 200 200 171 486 486 486 800 800 771

3 Mean 063 048 040 081 070 063 092 088 083 097 096 096
Median 063 041 026 091 080  0.69 100 099 098 >0.99  >099  >0.99
% > 0.80 429 200 200 547 514 486 914 771 686 97.1 943 943

4 Mean 076 062 052 090 082 075 096 094 091 098 097 097
Median 085  0.64 047 099 096 091 >0.99  >099  >0.99 >0.99  >099  >0.99
% > 0.80 543 486 371 929 | 657 543 943 943 886 97.1 971 943

10 Mean 085 090 085 097 096 095 098 097 097 >0.99 099 098
Median >099 =099 >0.99 >099 =099  >0.99 >0.99  >099  >0.99 >099  >099  >0.99
% > 0.80 943 829 714 971 943 943 971 971 971 100.0 971  97.1

15 Mean 097 095 093 098 097 096 099 098 097 >099  >099  0.99
Median >099  >099  >0.99 >0.99  >0.99  >0.99 >0.99  >099  >0.99 >0.99  >099  >0.99
% > 0.80 943 943 914 971 971 943 971 971 971 100.0 1000  97.1

[2] Number of reactors used in hypothetical experiment, assuming five observat

ions taken from each reactor.

[b] Number of experimental groupings used in hypothetical experiment, assuming MSexper does not vary.

[c] Number of treatments used in hypothetical experiment.
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useful to evaluate the shortest possible interval between
mixings (1 day) to unmixed reactors.

At some point, the benefit gained in obtaining greater
power through increased replication is outweighed by several
factors. First, in this analysis it was assumed that the MSexper
term would be the same regardless of the number of reactors
and experimental groupings used. If it is necessary to perform
10 experimental groupings and each takes approximately
three weeks to run from set—up to clean—up, then the study
would take more than half a year. Given the large amount of
variability found between replicates performed within two
months, it is not reasonable to expect constant variability
across six months. This is due to factors such as altered
ambient air temperature or differences in the abundance of
microbial populations from sources not being controlled.
Second, the cost of labor and materials to repeat the same
experimental grouping ten times would become overwhelm-
ing. Third, on a related subject, if it were necessary to use
10 reactors per treatment and experimental grouping, then
limitations of labor and cost would again be introduced. For
example, if 10 reactors were used in the mixing study for each
treatment, then 30 reactors would be mixed on certain days.
In order to make reasonable comparisons between
treatments, the time of the mixing event would need to be
approximately the same for every reactor. This would not be
possible. Statistical, practical, and economic reasons
currently limit the ability to design experiments with
reasonable power. While the reactor system used in these
experiments has been engineered to limit obvious sources of
variability, additional work may be necessary to refine and
standardize experimental techniques used by all researchers.
Standardization of procedures will enable engineers to better
cooperate to address concerns of variability and improve the
process.

If the variability between experimental groupings could
be reduced, then the difficulty of obtaining a robust
experimental design would be reduced. Table 7 presents data
from a simulation in which the MSexp values used to create
table 6 were reduced by 50%. Comparison of the two tables
demonstrates the effect that the reduction in variability would
have on the structure of the experimental design. For a future
hypothetical study addressing the effects of two treatments
on the process, the data in table 6 suggest that each treatment
be replicated with four reactors and three experimental
groupings, or with two reactors and four experimental
groupings. However, the data in table 7 suggest using two
treatments with two reactors and three experimental
groupings. In addition to the practical reasons for reducing
variability in compost data outlined at the beginning of this
article, this analysis demonstrates the effect that methods of
improving process reproducibility would have on experi-
mental design in composting studies.

CONCLUSION

The sensitivity analysis represented in figures 6 and 7
demonstrates the previously described effect of variability on
process performance. It was shown that a difference as small
as 5°C between two reactors can account for a 33% difference
in process performance. In addition, a difference of
1 percentage point in moisture content, which is smaller than
the sensitivity of current methods, results in a difference of
15% at a moisture content of 30% (w.b.).

The analysis of experimental data in this study
demonstrates that it is necessary to question the predictions
of kinetic and process models. If it is not possible to detect
differences of 15°C because of large variability in an
experiment, then the accuracy of the parameters derived from

Table 7. Results of power analysis simulation using inoculated reactor data used to construct figure 5 of Schloss and Walker (2000) when
the MS;p.r used in the power analysis simulation is assumed to be 50% of the value reported. The shaded blocks represent cases in
which at least 75% of the statistical tests obtained a power greater than 0.80 when attempting to detect differences of 10°C or less.

Reactorslal: 1 2 4 10

Exptlb] Treatments(cl: 2 4 6 2 4 6 2 4 6 2 4 6

2 Mean 0.53 0.43 0.41 0.71 0.67  0.635 0.85 0.85 0.83 0.95 0.95 0.95
Median 0.50 0.34 0.30 0.75 0.72 0.67 0.94 0.96 0.96 >0.99  >0.99  >0.99
%> 0.80 20.0 20.0 17.1 48.6 48.6 48.6 68.6 68.6 65.7 94.3 94.3 94.3

3 Mean 0.81 0.67 0.63 9210  0.88 0.83 0.97 0.95 0.94 0.98 0.98 0.97
Median 0.91 0.74 0.69 >0.99  0.99 0.98 >0.99  >0.99  >0.99 >0.99  >0.99  >0.99
% >0.80 65.7 48.6 48.6 91.4 77.1 68.6 94.3 943 943 97.1 97.1 97.1

4 Mean 0.90 0.78 0.75 0.96 0.94 0.91 0.98 0.97 0.96 0.99 0.98 0.98
Median 0.99 0.94 0.91 >0.99  >0.99  >0.99 >0.99  >0.99  >0.99 >0.99  >0.99  >0.99
%>0.80 82.9 65.7 54.3 94.3 94.3 88.6 97.1 94.3 94.3 97.1 97.1 97.1

10 Mean 0.97 0.95 0.95 0.98 0.97 0.97 0.99 0.98 0.98 >0.99  >099  >0.99
Median >0.99  >0.99  >0.99 >0.99  >0.99  >0.99 >0.99  >0.99  >0.99 >0.99  >0.99  >0.99
% >0.80 97.1 94.3 94.3 97.1 97.1 97.1 97.1 100.0  100.0 100.0  100.0  100.0

15 Mean 0.98 0.97 0.96 0.99 0.98 0.97 >0.99  >0.99  0.99 >0.99  >0.99  >0.99
Median >0.99  >099  >0.99 >0.99  >0.99  >0.99 >0.99  >099  >0.99 >0.99  >099  >0.99
% >0.80 97.1 94.3 943 97.1 97.1 97.1 100.0  100.0  97.1 100.0  100.0  100.0

[2] Number of reactors used in hypothetical experiment, assuming five observations taken from each reactor.
[b] Number of experimental groupings used in hypothetical experiment, assuming MSexper does not vary.
[c] Number of treatments used in hypothetical experiment.
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those experiments for use in models predicting process
behavior becomes dubious. For example, table 1 lists the
parameter estimates and standard deviations for the
parameters used in the CTMI model used by Richard and
Walker (1998), and the error in these parameters varies from
8% to 20%. As shown in figure 6, a 7.1% temperature
difference (equivalent to 5°C at 70°C) results in a 33.1%
difference in the predicted rate of CO, evolution.

While it is not possible at this time to obtain consistently
insightful information for statistical analysis with moisture
content data, future research will focus on limiting the
variability in temperature data. The variability in tempera-
ture data was reduced by inoculation, but a large amount of
variability still exists. Because of the inoculum study, it is
expected that other sources of microorganisms are serving as
indirect sources of inoculation. These sources may include
water, air, substrate, and reactor walls. By limiting these
sources of variability, we hypothesize that it will be possible
to further reduce experimental variability and to achieve the
goals outlined earlier. While the variation in physical
parameters, such as initial moisture content, air temperature,
substrate density, and recipe mix, are also important in
obtaining a reproducible process, variation of these variables
will continue to be limited. In addition, experimental designs
should be implemented that provide maximum statistical
power with minimal resources.
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