
A High-Throughput DNA Sequence Aligner for Microbial
Ecology Studies
Patrick D. Schloss1,2*

1 Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America, 2 Department of Microbiology and Immunology,

University of Michigan, Ann Arbor, Michigan, United States of America

Abstract

As the scope of microbial surveys expands with the parallel growth in sequencing capacity, a significant bottleneck in data
analysis is the ability to generate a biologically meaningful multiple sequence alignment. The most commonly used aligners
have varying alignment quality and speed, tend to depend on a specific reference alignment, or lack a complete description
of the underlying algorithm. The purpose of this study was to create and validate an aligner with the goal of quickly
generating a high quality alignment and having the flexibility to use any reference alignment. Using the simple nearest
alignment space termination algorithm, the resulting aligner operates in linear time, requires a small memory footprint, and
generates a high quality alignment. In addition, the alignments generated for variable regions were of as high a quality as
the alignment of full-length sequences. As implemented, the method was able to align 18 full-length 16S rRNA gene
sequences and 58 V2 region sequences per second to the 50,000-column SILVA reference alignment. Most importantly, the
resulting alignments were of a quality equal to SILVA-generated alignments. The aligner described in this study will enable
scientists to rapidly generate robust multiple sequences alignments that are implicitly based upon the predicted secondary
structure of the 16S rRNA molecule. Furthermore, because the implementation is not connected to a specific database it is
easy to generalize the method to reference alignments for any DNA sequence.

Citation: Schloss PD (2009) A High-Throughput DNA Sequence Aligner for Microbial Ecology Studies. PLoS ONE 4(12): e8230. doi:10.1371/journal.pone.0008230

Editor: John Quackenbush, Dana-Farber Cancer Institute, United States of America

Received July 8, 2009; Accepted November 12, 2009; Published December 14, 2009

Copyright: � 2009 Schloss. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was funded by the College of Natural Resources and the Environment at the University of Massachusetts, the School of Medicine at the
University of Michigan, a grant from the Sloan Foundation, and a grant from the National Science Foundation (award #0743432). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: pschloss@umich.edu

Introduction

Recent advances in traditional Sanger sequencing and pyrose-

quencing technologies have facilitated the ability to design studies

where 1022107 16S rRNA gene sequences ranging in length

between 60 and 1500 bp are generated to address interesting

ecological questions [1–4]. This data gush has forced computa-

tional microbial ecologists to re-factor software tools to make the

analysis of these datasets feasible. A significant bottleneck in the

analysis of these sequences is the generation of a robust multiple

sequence alignment (MSA). An MSA is critical to generating

phylogenies and calculating meaningful pairwise genetic distances

that can be used to assign sequences to operationally-defined

taxonomic units [OTUs, 5]. Because of the difficulty inherent in

MSA calculations, investigators have bypassed OTU-based

approaches in preference for phylotype-based approaches [3,6].

In such approaches, sequences are assigned to bins based on

similarity to a curated database. This has the limitation that

sequences in the same phylotype may be only marginally similar to

each other or unknown sequences may not affiliate to a pre-

existing taxonomy. Therefore, there is a significant need to reassess

alignment techniques with regard to their speed, memory

requirements, and accuracy.

For generic sequencing alignments, popular aligners have

included ClustalW [7], MAFFT [8], and MUSCLE [9]. Several

recent pyrosequencing studies of the V6 16S rRNA region (ca.

60 bp long) have used MUSCLE to generate MSAs for up to

20,000 sequences [3,10,11]. These techniques scale at least

quadratically in space and time for sequence length and

quadratically in space and to the third power in time for the

number of sequences. Thus, as the number of sequences in a

dataset surpasses their length, the memory required to double the

number of sequences in an alignment increases at least four-fold

and the time required increases at least eight-fold. Because these

limitations are compounded in typical implementations by storing

all of the data in RAM, it is not possible to align more than 5,000

full-length sequences on a typical desktop computer. Alternatively,

some have proposed calculating genetic distances using only

pairwise alignments [12]. The time requirements of such an

approach scale quadratically with the number of sequences and

makes it impossible to insure positional homology. An additional

limitation of the generic sequence aligners is that the alignments

do not incorporate the predicted secondary structure of the 16S

rRNA molecule and therefore it is impossible to compare datasets

without re-aligning all of the sequences.

The secondary structure is an important feature to consider in

generating the alignment because it increases the likelihood that

the alignment conserves positional homology between sequences

[13]. Without such a consideration, the alignment is more sensitive

to user-supplied parameters such as match and mismatch scores,

and gap opening and extension penalties. There are currently four

profile-based aligners that are used to generate 16S rRNA-specific

alignments that each at least implicitly considers the secondary

structure. Each of these methods is associated with well-established

PLoS ONE | www.plosone.org 1 December 2009 | Volume 4 | Issue 12 | e8230

16S rRNA gene databases and reference MSAs, which each have

strengths and weaknesses. A general advantage of each of these

methods is that rather than generating alignments de novo, they

perform profile-based alignments and their complexity scales

linearly in time and have a minimal memory footprint. In deciding

upon an aligner it is important to consider the alignment quality,

ability to align large datasets, speed, dependence on a specific

database, cost, and openness of the algorithm.

The RDP (http://rdp.cme.msu.edu) aligner uses 16S rRNA

secondary structure models to generate and apply hidden Markov

models within Infernal [14,15]. Although this has the strength of

directly incorporating the secondary structure of the 16S rRNA

molecule, the number of available models is limited, which causes

variable regions to not be aligned. Furthermore, while the aligner

scales linearly in time (i.e. doubling the number of sequences

doubles the time required to construct the MSA), the alignment

process is relatively slow compared to other methods. Finally, the

length and structure of the RDP alignment changes as new

reference models are included. This requires users to re-align their

data each time they acquire new sequences. The strengths of the

RDP aligner are that it is free, open source, and can be run on a

user’s local computer.

The popular software package, ARB [16], has a built-in aligner

that has yet to be fully described in the literature. Although specific

details are lacking, the aligner uses a suffix tree to find related

reference sequences and that the actual alignment step uses

multiple reference sequences and secondary structure information

to carryout the alignment. Perhaps the most significant limitation

in the ARB implementation is that suffix tree server has become

practically unusable to most users as the number of full-length

sequences has increased. As an alternative, the ARB developers

have spun-off the SILVA database project (http://www.arb-silva.

de). SILVA serves as a repository for aligned rRNA sequences and

the SINA aligner [17]. This implementation of the ARB aligner is

more convenient, but also has yet to be described in the literature.

Complicating matters is that the website limits users to aligning

300 sequences at a time; aligning additional sequences is available

on a pay-for-use basis. Although the MSA length and structure is

stable, it is an unwieldy 50,000 columns long.

The aligner available through the greengenes website (http://

greengenes.lbl.gov) is not explicitly dependent on secondary

structure models; however, the generation of the reference

database alignment does take into account the secondary structure

(Fig. 1) [18,19]. The reference alignment is considerably shorter

than the SILVA alignment (7,682 columns). Although the source

code for the greengenes aligner is not open, the algorithm has been

published [19]. The original implementation used kmer searching

with 7-mers to identify the closest template sequence in the

reference database. The current implementation uses blastn [20]

to identify the longest template sequence among the top-ten

matches (TZ DeSantis, personal communication). In the second

step, the algorithm uses blastn to generate pairwise alignments

between the unaligned candidate and template sequences; in the

current greengenes implementation the same blastn alignment

generated in the first step is used for the second step. Finally, gap

positions are introduced to the candidate sequence so that the final

alignment is the same length as the reference database and

positional homology is maintained using the nearest alignment

space termination (NAST) algorithm. The speed of the aligner

scales linearly with the number of candidate sequences so that

doubling the number of candidate sequences would double the

time requirement. The only significant memory requirement is

what is required to store the reference alignment. A challenge in

each of these profile-based methods is the creation of a high-

Figure 1. Flowchart describing the alignment algorithm. The published and current greengenes aligner algorithm is shown in black and the
modifications that were tested in this study are shown in blue.
doi:10.1371/journal.pone.0008230.g001

DNA Sequence Aligner

PLoS ONE | www.plosone.org 2 December 2009 | Volume 4 | Issue 12 | e8230

quality reference alignment because the alignments that are

generated will only be as good as the reference. Assuming that one

has a good reference alignment, the greengenes aligner appears to

have the most potential for quickly generating a high quality

sequence alignment.

In the present study I used several simulations to assess how

various permutations of the alignment algorithm effect alignment

quality and speed. Specifically, I tested various methods of

identifying the best template sequence and completing the pairwise

alignments (Fig. 1). I was also interested in determining how well

these results generalized to various regions within the 16S rRNA

gene sequence commonly used in recently published surveys. This

study enabled me to produce an aligner that rapidly produced

high-quality alignments, robust to analysis of sequence fragments,

could be generalized to genes other than 16S rRNA, and made

independent of a specific database.

Results

Comparison of Database Quality
I identified 200,433 unique, high-quality, aligned 16S rRNA

gene sequences that were shared by the SILVA, greengenes, and

RDP databases. ARB databases provided by SILVA and green-

genes include helical mapping data that indicate which bases pair

with each other within the predicted 16S rRNA secondary

structure. For example, using the SILVA alignment, the 1,542 bp

E. coli 16S rRNA secondary structure consists of 1,028 bases that

are expected to form pairs. Of these, 808 form normal Watson-

Crick base pairs (i.e. AT, GC; marked with a ‘,’ in ARB), 202

form weak pairs (i.e. GA, TT, GT; marked ‘2’, ‘ = ’, or ‘+’), and

18 do not pair (i.e. AA, AC, CC, CT, GG; marked ‘#’). Although

sequences naturally have non-pairing bases within the paring

regions of the secondary structure, an excessive number of these is

an indicator of poor sequence alignment (e.g. Fig. 2). With this in

mind, I compared the number of non-paring bases in each

sequence from the SILVA and greengenes databases. On average,

each sequence alignment had 18.0 more non-paring bases

(sd = 16.0) in the greengenes alignment than in the SILVA

alignment; only 5.8% of the greengenes aligned sequences had

fewer non-pairs than the SILVA aligned sequences. It was not

possible to perform a similar analysis with the RDP alignment

because similar helical mapping data are not available. Rather, I

counted the number of unaligned bases in each sequence, which

they indicate in a lower case typeface to characterize the RDP

alignment (Fig. 2). On average, 7.6% of each sequence’s bases

were unaligned (sd = 1.5%) and within the variable regions

targeted by pyrosequencing the percentage was higher. Based on

these analyses, I decided to use the SILVA MSA to evaluate the

new aligner.

Database Searching Methods
The first step in the alignment algorithm is to find the most

similar template sequence for each unaligned candidate sequence.

The ARB aligner uses a suffix tree search method and the

greengenes aligner has used either a kmer searching method or

blastn. Suffix tree and kmer searching have the advantage that

they are alignment independent techniques, which could make

them considerably faster than using the alignment-based blastn

approach. The extent of the speed-up and the effect on accuracy

were unknown. To assess the accuracy, I calculated the similarity

between each SILVA-aligned candidate sequence and each of the

template sequences. These similarities were used to assess how well

each method identified the best match and resulting alignment

quality.

Regardless of the region within the 16S rRNA gene, kmer

searching outperformed both blastn and suffix tree searching in its

ability to find the best template (Tables 1 and S1). When searching

against full-length templates, 7 to 9-mers provided the closest

matches. Across the 10 regions that I tested, between 68 and 77%

of the candidates found their true best template match. With the

exception of the V6 region, the average candidate sequence found

a template sequence that was between 3.7 and 7.5% different from

the optimal template when using kmer searching; the V6

candidates averaged a difference of 12.5% from their optimal

template. A difference of 10% between V6 fragments is

Figure 2. Comparison of alignments generated by the RDP, greengenes, and SILVA databases. Alignments were taken between
positions 60 and 113 of the E. coli 16S rRNA gene sequence for E. coli and four Enteroccocus spp. The alignment generated for these sequences within
this region using 8-mers and the Needleman-Wunsch algorithm was identical to that found in the SILVA alignment. The lower-case bases in the RDP
alignment indicate unaligned positions. For the greengenes and SILVA alignments, yellow-highlighting represents bases that are predicted to form
traditional Watson-Crick base-pairs in the secondary structure, gray-highlighting represents weak base-pairs, black-highlighting represents bases that
will not form base-pairs, and a lack of highlighting represents bases that are predicted to be in loop structures.
doi:10.1371/journal.pone.0008230.g002

DNA Sequence Aligner

PLoS ONE | www.plosone.org 3 December 2009 | Volume 4 | Issue 12 | e8230

comparable to a 3% difference over the full length of the gene

(unpublished data); therefore a 12.5% difference is not out of line.

The suffix tree searches only found the best template sequence for

25–62% of the candidate sequences. With the exception of the V6

region, the average candidate sequence found a template sequence

that was between 7 and 17% different from the optimal template

when using suffix tree searching; the V6 candidates averaged a

difference of 37% from their optimal template. Using blastn, I

found that for every region except the V14 and V19, many

candidate sequences could not find a significant match to the

template database (Table 2). For example, 106 (0.06%) of the V2

and 64,389 (35%) of the V6 candidates could not find a significant

match. Although this may be due to the use of a large blastn word

size, more sensitive searches with smaller word sizes became to

slow to be practical. The blastn approach found the best template

for between 17 and 63% of the candidate sequences in each

region.

With respect to the time required for each approach, kmer

searching outperformed the other methods regardless of the region

being investigated (Table 1 and S1). In general kmer sizes of 7 or 8

were typically the fastest. Also, speed scaled with the candidate

sequence length. For example, approximately 1,490 V6, 192 V23,

and 52 V19 candidates sequences could be searched per second.

Suffix tree searching required between 25 and 65 times longer

than kmer searching. Blastn searches required between 25 and 70

times longer than kmer searching. While these speeds are

implementation-dependent, the stark differences in speed and

quality indicate that kmer searching was superior to other

methods. While slight improvements are possible by tailoring the

kmer size to the region or specific gene of interest, in general, 8-

mers provided the best and fastest alignments for 16S rRNA gene

fragment sequences.

I also investigated the effect of using template sequences that

corresponded to the region being aligned on whether there was an

improvement in accuracy or speed (Table S2). There were no

significant improvements in accuracy for any of the methods when

using the customized template sequences. The most noticeable

effects of shorter templates were the optimal kmer size and speed.

For all regions the optimal kmer size decreased from 7 to 9-mers to

5 to 7-mers. Using region-specific template sequences increased

the search speed by up to 56%.

Pairwise Alignment Methods
I investigated the accuracy and speed of the various alignment

methods when the true best template sequence was selected for

each candidate sequence (Tables 3 and S3). I tested the

Needleman-Wunsch and Gotoh global alignment algorithms,

which only differ in the number of parameters they use to

penalize gaps. It was expected that Gotoh would be slower, but

more accurate than the Needleman-Wunch algorithm because it

uses an extra parameter. I also tested blastn, a local alignment

method that approximates the Smith-Waterman algorithm [20].

The greengenes aligner currently implements blastn to carryout

pairwise alignments. This approach was expected to be the fastest,

but perhaps least accurate of the three methods. Furthermore,

because it is a local alignment approach, it was expected to trim

the ends of sequences that were sufficiently different from their

template.

I rewarded matches and penalized mismatches with one point

each and varied the gap opening and extension penalties to

identify the best alignment conditions. Surprisingly, there was little

Table 1. Comparison of search methods when using the V2
and V19 candidate sequences and full-length template
sequences. a

Region Method
Speed
(seqs/s) % Correct template % Dsimilarity (sd)b

V2 5-mers 118 50.6 11.7 (12.8)

6-mers 180 68.3 7.2 (11.2)

7-mers 280 72.6 6.1 (10.6)

8-mers 225 72.7 6.1 (10.5)

9-mers 202 72.4 6.1 (10.5)

10-mers 104 71.7 6.3 (10.6)

Suffix tree 5.5 39.4 15.3 (13.6)

blastn 8.8 49.0 13.0 (13.8)

V19 5-mers 37 54.9 8.3 (10.0)

6-mers 34 72.0 5.0 (8.5)

7-mers 41 74.6 4.5 (8.2)

8-mers 49 74.6 4.5 (8.2)

9-mers 52 74.1 4.6 (8.3)

10-mers 43 73.4 4.7 (8.4)

Suffix tree 1.9 62.3 7.2 (9.9)

blastn 0.7 63.4 6.8 (9.6)

aData for the other regions and comparisons to region specific template
sequences are provided in Tables S1 and S2.

bThe average percentage difference in similarity between the correct template
and the actual template returned by the search method for each candidate
sequence. Smaller values indicate that more similar sequences were identified.
Values in parentheses represent the standard deviation.

doi:10.1371/journal.pone.0008230.t001

Table 2. Number of candidate sequences that did not yield a
significant blast match against the full-length or
region-specific template databases.

Region Total Candidate Seqs. Template type Count %

V19 186,206 Full-length 0 0.00

Region-specific NA NA

V14 139,987 Full-length 0 0.00

Region-specific 0 0.00

V12 139,987 Full-length 12 0.01

Region-specific 12 0.01

V2 186,206 Full-length 106 0.06

Region-specific 105 0.06

V23 186,206 Full-length 10 0.01

Region-specific 11 0.01

V3 186,206 Full-length 432 0.23

Region-specific 432 0.23

V4 186,206 Full-length 548 0.29

Region-specific 546 0.29

V6 186,206 Full-length 64,389 34.6

Region-specific 64,089 34.4

V89 77,685 Full-length 1 0.00

Region-specific 1 0.00

V9 77,685 Full-length 14 0.02

Region-specific 14 0.02

doi:10.1371/journal.pone.0008230.t002

DNA Sequence Aligner

PLoS ONE | www.plosone.org 4 December 2009 | Volume 4 | Issue 12 | e8230

variation in alignment quality regardless of the algorithm or

conditions selected (Tables 3 and S3). With the exception of the

V6 region, the realigned candidate sequences were, on average,

0.04–0.66 percentage points more similar to the template

sequence than the SILVA-aligned candidate sequences regardless

of the algorithm or penalties employed. For the V6 region, blastn

produced alignments that were 1.64–1.85 percentage points

worse; however the Needleman-Wunsch and Gotoh algorithms

produced alignments that were 0.30 to 0.63 percentage points

better. Although the effects of the different penalty schemes were

minimal, the best alignments were produced using the Needle-

man-Wunsch algorithm with a gap penalty of 2 for all regions

except the V6, which had an optimal gap penalty of 1. As

expected, the blastn algorithm tended to truncate the candidate

sequence alignment more frequently than the global alignment

algorithms. For example, the optimal alignment conditions for the

V6 region aligned each of the candidate sequences completely. In

contrast, the optimal blastn condition aligned an average of 95.4%

of each sequence (s.d. = 18.7%).

Universally, the Needleman-Wunsch algorithm was the fastest of

the three methods followed by the Gotoh and blastn approaches.

My implementation of the Needleman-Wunsch algorithm aligned

between 21 and 73 sequences per second. Similar to the kmer

searching implementation, these speeds were affected by candidate

sequence length. Using region specific template sequences had no

significant effect on alignment quality but increased the pairwise

alignment speed by up to 116% (Table S4).

Assessing the Overall Algorithm
The data in Tables 1, S1, and S2 indicated that the various

search methods did not necessarily identify the best template

sequence. Yet in the second set of simulations, I used the true best

template to investigate the various alignment options and found

that the alignments were as good as the SILVA alignments

(Tables 2, S3, and S4). In the next set of simulations, I selected the

best kmer size and alignment parameters for each region to

evaluate the overall process (Table 4). On average the resulting

alignments were between 0.61% worse and 0.34% better than the

alignments generated by SILVA when using full-length template

sequences. Although speed was affected by candidate sequence

length, between 18 and 78 sequences were aligned per second.

When using the region-specific template sequences, the alignments

were between 0.07% worse and 0.40% better than the alignments

generated by SILVA. The region-specific templates increased the

overall alignment speed so that between 37 and 145 sequences

were aligned per second.

Effect of Full-Length Alignment Length
This study used a 50,000-column MSA alignment for a gene that

is approximately 1,500-bp long. In comparison, the greengenes

alignment has 7,682 columns. The extended SILVA alignment has

been justified by a desire to include archaeal 16S rRNA and

eukaryotic 18S rRNA gene sequences as well as to provide sufficient

padding for new sequences that may have long insertions. To

simulate a greengenes-like alignment, I removed any column from

the SILVA alignment only contained gap characters. This produced

a 6,806-column alignment. Using the transformed template

alignment sequences, I found that the alignment quality did not

vary considerably from the results obtained with the 50,000-column

MSA (Table 4). Furthermore, although the same number of bases

were represented in each sequence, the speeds observed using

vertical gap-filtered MSA were up to 160% faster than using the full

50,000 character alignment.

Comparison to the Greengenes Implementations
I implemented the approaches that have been used by greengenes

to assess the sensitivity of the overall algorithm. Using the original

approach of employing 7-mer searching combined with blast

alignments I found that with the exception of the V6 region, the

alignments were between 0.19% worse and 0.36% better than the

SILVA alignments (Table 5). These values are somewhat deceiving

as I found that, with the exception of the V6 region, between 0.8

and 4.8% of the sequence in each region had less than 95% of its

bases aligned. This version of the algorithm aligned between 15 and

25 sequences per second. Although this is considerably slower than

what I observed using with the optimal conditions it is considerably

faster than the 10 sequences per minute (i.e. 0.17 sequences per

second) that was described previously [19]. To mimic the current

greengenes implementation, I used blastn to find the closest match.

This slightly improved the overall alignments over the original

greengenes implementation so that, with the exception of the V6

Table 3. Summary of alignment improvement for V19
candidate sequences using the blastn, Gotoh, or Needleman-
Wunsch pairwise alignment algorithms when the best
template was selected for each candidate sequence. a

Alignment
method

Speed
(seq/s)

Gap
opening

Gap
extension

% Dsimilarity
(sd)b

blastn 10–12 5 2 0.42 (0.89)

4 2 0.41 (0.87)

3 2 0.42 (0.87)

2 2 0.41 (0.82)

1 2 0.43 (0.78)

4 1 0.34 (0.68)

3 1 0.36 (0.68)

2 1 0.39 (0.69)

Gotoh 15–17 5 2 0.23 (0.44)

4 2 0.24 (0.45)

3 2 0.27 (0.48)

2 2 0.29 (0.49)

1 2 0.34 (0.55)

4 1 0.25 (0.45)

3 1 0.29 (0.49)

2 1 0.32 (0.52)

1 1 0.41 (0.61)

Needleman-
Wunsch

21–24 5 NA 0.27 (0.49)

4 NA 0.30 (0.51)

3 NA 0.34 (0.55)

2 NA 0.42 (0.62)

1 NA 0.38 (0.60)

aData for the other regions and comparisons to region specific template
sequences are provided in Tables S3 and S4.

bThe average percentage difference in similarity between the template
sequence and the SILVA aligned candidate sequence and the difference in
similarity between the template sequence and the candidate sequence
aligned by the different implementations. Positive values indicate the
candidate alignment is more similar to the template sequence and negative
values are less similar. Values in parentheses indicate the standard deviation.

bblastn does not permit these gap penalties when using a match reward and
mismatch penalty of 1 and the Needleman-Wunsch algorithm only takes one
gap penalty parameter.

doi:10.1371/journal.pone.0008230.t003

DNA Sequence Aligner

PLoS ONE | www.plosone.org 5 December 2009 | Volume 4 | Issue 12 | e8230

region, the average alignment was between 0.27% worse and 0.69%

better than the SILVA alignments. Again, these values are

deceiving, as between 1.1 and 5.4% of the sequences had fewer

than 95% of their bases aligned in each sequence. The greengenes

aligner approach suffered when aligning the V6 region because of is

dependence on blastn. When using 7-mers and blastn the candidate

sequences averaged 4.6% (s.d. = 19.5%) worse than the SILVA

candidate sequences and more than 18.0% of the sequences had less

than 95% of its bases aligned. Considering 35% of the V6 candidate

sequences could not be matched to a template via blastn, the current

greengenes implementation was ineffective.

Discussion

A critical step in analyzing DNA sequences generated from

community surveys is generating a MSA. Here I described and

validated a variation of the greengenes and SILVA aligners and

showed that this aligner quickly generates a high-quality

alignment. Also, although investigators are encouraged to perform

similar types of experiments to optimize the alignment conditions

for their region of interest, the kmer search and Needlema-

Wunsch alignment approach was robust to perturbations in their

settings. Interestingly, whereas other aligners appear to use

multiple template sequences to align one candidate sequence, this

alignment algorithm only requires one reference sequence per

candidate sequence and does require explicit knowledge of the 16S

rRNA secondary structure.

An important consideration in selecting a reference alignment is

its underlying quality, yet manually curating a reference alignment

is a tedious and painstaking process. It is a common practice to

mask hypervariable regions when generating a deep-level

phylogeny [21]. Such a practice enables one to ignore the

alignment of the masked out regions, which is typically where the

problematic areas are located. However, when assigning sequences

to OTUs or using phylogenies for community-based hypothesis

tests, the fine level of detail contained within these variable regions

is significant and should not be removed. The original Lane mask

removes, on average, 14% of the bases from a full-length sequence

alignment of E. coli’s full-length 16S rRNA gene [21]. Considering

the typical pyrosequencing-based study focuses on these variable

regions and the sequence reads generated by pyrosequencing tend

to be shorter than 250 bp, it is important that these regions not be

discarded. While some have mistakenly used such masks prior to

performing other analyses [4,6,22–25], a better practice would be

Table 4. Analysis of optimal alignment settings for each
variable region when using full-length, region specific, and
vertical-gap filtered full-length template sequences.

Region
Template
sequences

Speed
(seqs/s)

% Dsimilarity
(sd)a

%
Trimmedb

V19 Full-length 18 0.34 (0.64) 0.17

Region-specific NA NA NA

Vertical-gap filtered 22 0.34 (0.65) 0.17

V14 Full-length 31 0.30 (0.84) 0.20

Region-specific 37 0.31 (0.83) 0.20

Vertical-gap filtered 41 0.29 (0.84) 0.20

V12 Full-length 51 0.29 (1.59) 0.29

Region-specific 79 0.40 (1.52) 0.26

Vertical-gap filtered 88 0.32 (1.57) 0.27

V2 Full-length 58 20.09 (1.23) 0.02

Region-specific 100 20.01 (1.16) 0.10

Vertical-gap filtered 105 20.09 (1.23) 0.02

V23 Full-length 43 0.07 (0.91) 0.02

Region-specific 64 0.14 (0.86) 0.23

Vertical-gap filtered 65 0.07 (0.91) 0.02

V3 Full-length 69 20.18 (1.50) 0.00

Region-specific 122 20.06 (1.35) 0.27

Vertical-gap filtered 151 20.16 (1.49) 0.00

V4 Full-length 61 20.19 (1.00) 0.00

Region-specific 100 20.07 (0.75) 0.00

Vertical-gap filtered 109 20.19 (1.00) 0.00

V6 Full-length 78 20.61 (3.63) 0.02

Region-specific 145 20.02 (2.92) 0.44

Vertical-gap filtered 204 20.64 (3.66) 0.02

V89 Full-length 45 0.09 (0.78) 0.13

Region-specific 70 0.12 (0.75) 0.12

Vertical-gap filtered 64 0.09 (0.78) 0.13

V9 Full-length 61 0.01 (1.24) 0.21

Region-specific 100 0.08 (1.14) 0.17

Vertical-gap filtered 102 0.01 (1.24) 0.21

aSee description for Table 3.
bThe percentage of sequences where less than 95% of the bases were aligned

to the template sequence.
doi:10.1371/journal.pone.0008230.t004

Table 5. Analysis of two versions of the greengenes aligner
when aligning various regions to full-length SILVA-aligned
template sequences.

Region
greengenes
version

Speed
(seqs/s)

% Dsimilarity
(sd)a

%
Trimmedb

V19 Originalc 15 0.31 (0.83) 3.09

Currentd 0.6 0.37 (0.82) 3.06

V14 Original 18 0.26 (1.19) 4.82

Current 1.5 0.39 (1.14) 4.27

V12 Original 18 0.36 (4.51) 4.51

Current 4.5 0.69 (2.73) 5.40

V2 Original 19 20.09 (0.91) 0.91

Current 5.0 0.27 (2.77) 2.04

V23 Original 17 0.07 (1.15) 2.16

Current 2.2 0.25 (1.27) 2.08

V3 Original 20 20.02 (1.85) 2.18

Current 7.3 0.00 (4.41) 2.52

V4 Original 19 20.19 (1.03) 0.77

Current 5.9 20.27 (4.44) 1.10

V6 Original 26 24.58 (19.5) 18.0

Current 12 228.4 (39.9) 37.7

V89 Original 20 0.14 (1.07) 1.99

Current 2.0 0.27 (1.08) 1.96

V9 Original 21 0.16 (1.76) 2.09

Current 3.0 0.29 (1.99) 1.82

a, bSee descriptions for Table 4.
cSearching with 7-mers and using blastn to align.
dSearching and aligning with blastn.
doi:10.1371/journal.pone.0008230.t005

DNA Sequence Aligner

PLoS ONE | www.plosone.org 6 December 2009 | Volume 4 | Issue 12 | e8230

to manually curate the reference alignment in these regions and to

include all of the data. Ultimately, the quality of an alignment will

only be as good as reference alignment, regardless of the

algorithm.

Because this aligner is not tied to a particular database

alignment, this aligner can be used with any reference aligner

whether the DNA represent rRNA genes or protein coding genes

[e.g. 26]. The first step in such an analysis is to generate a de novo

multiple sequence alignment using software such as Clustal,

MUSCLE, or MAFFT. Second, the new reference alignment

should be curated to insure positional homology across the

alignment. Third, unaligned sequences could then be aligned to

the reference alignment using a variety of parameters. Finally,

manual inspection of the newly aligned sequences should reveal

the optimal parameters. Considering the general lack of sensitivity

of the method to variations in the various parameters it is likely

that the parameters described here will work for other genes.

As microbial ecologists continue to generate massive data sets, it

is important to continually refine and validate every step in the

analysis pipeline. Central to this ideal is the availability of open

source software and peer-reviewed methods. The combined

generation of a fast, parallelized, open source, and flexible aligner

with the simulations performed in this study demonstrate that this

tool will be a valuable contribution to future investigations.

Methods

Selection of Sequences Used in Analysis
I obtained the SSURef (Release 96) alignment from the SILVA

database on October 14, 2008, which contained 271,543 bacterial

16S rRNA gene sequences longer than 1,200 bp. Aligned

sequences were downloaded from the greengene and RDP

databases on November 16, 2008. The SILVA database was

selected because it was the longest and visual inspection of the

alignment suggested that it had the highest overall quality (Fig. 2).

Using ARB, I removed any sequence that affiliated with

mitochondria or chloroplasts or were flagged as being of poor

alignments, having more than five ambiguous bases, or appearing

chimeric. This screen resulted in a collection of 243,472 high-

quality aligned sequences. I dereplicated these sequences to obtain

222,086 unique sequences. Finally, I cross-matched accessions

between the SILVA, greengenes, and RDP databases to obtain a

collection of 200,433 sequences.

Because the SILVA reference alignment (i.e. the SEED) is not

publicly available, I attempted to replicate the SEED database.

First, I parsed the 200,433 sequences to identify those sequences

that had an alignment quality score (i.e. ARB database field

‘align_quality_slv’) of 100. Next, I identified those sequences in

this pool that started by E. coli position 28 and ended after position

1491. Sequences beginning before or ending after these coordi-

nates were trimmed. The resulting collection of 14,227 sequences

represented my full-length template database. The other 186,206

sequences represented the candidate sequence collection.

Generation of Region Specific Datasets
I selected 10 regions within the 16S rRNA gene for my

simulations. While maintaining the overall 50,000-character

alignment, I excised regions V19 (E. coli positions 28–1491), V12

(28–337), V14 (28–784), V2 (100–337), V23 (100–514), V3 (357–

514), V4 (578–784), V6 (986–1045), V89 (1100–1491), and V9

(1300–1491). There were 186,206 candidate sequences for

analyzing the V19, V2, V23, V3, V4, and V6 datasets. Because

not all sequences extended through the first and ninth variable

regions, I further screened these sequences to generate a collection

of 139,987 candidate sequences for analyzing the V12 and V14

datasets and a collection of 77,685 sequences for the V89 and V9

datasets. These regions were selected because they are tractable by

Sanger (V19, V14), 454 GS-FLX (V2, V3, V4, V6, V9), 454

Titanium (V12, V23, V89), and Illumina (V3, V6) sequencing

technologies. Many of these regions have also been used in

published studies: V19 [e.g. 2], V14 [e.g. 1], V2 [e.g. 4], V3 [e.g.

27], V4 [15], V6 [e.g. 3], and V9 [e.g. 28]. Considering there are

myriad permutations of these regions, these provided a generous

coverage of the 16S rRNA gene.

Permutations of the Greengenes Search Step
I tested three search options: blastn, kmer searching, and suffix

tree searching (Fig. 1). First, I used blastn as made available from

NCBI with a word size of 28, match reward of 1, mismatch

penalty of -1. These settings are comparable to those used in

megablast and were needed to make the search times competitive

with the other methods. Other parameters used for the blast

included returning one result in the tabular format (–b 1 –m 8).

Second, I used kmer searching with word sizes ranging between 5

and 10; smaller and larger words did not improve the searches and

were considerably slower. The kmer-searching algorithm involved

generating a lookup table where the keys in the table corresponded

to all possible 4K kmers. These keys pointed to a list of template

sequence identifiers. Next, the software identified all possible

kmers for a candidate sequence and counts the number of kmers

each template sequence shares with the candidate sequence. An

analogous procedure is used in the initial steps of the MUSCLE

algorithm [9]. The template with the most kmers in common was

then used for further analysis. Third, I generated a suffix tree for

each template sequence [29]. Using the string-to-string block-

move algorithm I identified the template suffix tree that broke the

candidate sequence into the fewest suffix sequences [30].

Permutations of the Greengenes Pairwise Alignment
Step

I tested three pairwise alignment methods: blastn [20] and the

Needleman-Wunsch [31] and Gotoh [32,33] global alignment

algorithms (Fig. 1). While my implementation of the aligner

permits changing the match and mismatch scores, I chose to use

+1 and -1 in all simulations. I used combinations of gap opening

penalties of 5, 4, 3, 2, and 1 with gap extension penalties of 2 and

1. These values were selected to overlap as much as possible with

the combinations that are implemented in the nucleotide-based

BLAST program. The bl2seq BLAST program was used to obtain

pairwise alignments using BLAST with the default word size of 11

(-W 11). To improve the Needleman-Wunsch and Gotoh

alignments at the ends of sequences that do not fully overlap, I

followed the end-space free variant algorithm described by

Gusfield [34].

Benchmarking of Methods
To assess the ability of each method to properly identify the

correct reference sequence, I calculated the raw similarity between

each candidate sequence and all template sequences. In these

similarity calculations, the comparison of a gap with a base is

counted as a mismatch and the comparison between a pair of gaps

does not factor into the calculation. These similarity scores were

calculated for each region under consideration because the

template for a candidate fragment would not necessarily be the

same as the template for the full-length candidate sequence. The

template sequence that was most similar to the candidate sequence

was considered the true best template sequence.

DNA Sequence Aligner

PLoS ONE | www.plosone.org 7 December 2009 | Volume 4 | Issue 12 | e8230

All simulations were run on a MacPro computer with 9 GB 667

MHz DDR2 RAM and 263 GHz Dual-Core Intel Xenon

processors. To insure that each analysis was running at optimal

speed, I only used 3 processors at a time and each analysis only

used one processor. At no time did RAM utilization approach 9

GB. All source code was written in C++ and compiled using the –

O3 compiler optimization flag.

Availability of Software
The aligner described here is freely available and provided

within the mothur software package as source code or as a

Windows executable (http://www.mothur.org) [35]. The defaults

within mothur include using kmer searching with a word size of 8

and using the Needleman-Wunsch algorithm for pairwise

alignments with a gap penalty of 22; however, all of the methods

can be selected by users with the ability to modify any of the match

and mismatch scores and gap penalties. Although not used in this

study, the mothur implementation enables users to use multiple

processors to accelerate the alignment. The mothur implementa-

tion requires that the user input FASTA-formatted files containing

their candidate sequences and template database. Example

template databases, including the one used in this study, are

available from the mothur website.

Supporting Information

Table S1 Comparison of search methods when using various

regions extracted from candidate sequences and full-length

template sequences.

Found at: doi:10.1371/journal.pone.0008230.s001 (0.07 MB

PDF)

Table S2 Comparison of search methods when using various

regions extracted from candidate sequences and region-specific

template sequences.

Found at: doi:10.1371/journal.pone.0008230.s002 (0.06 MB

PDF)

Table S3 Summary of alignment improvement for various

regions extracted from candidate sequences using the blastn,

Gotoh, or Needleman-Wunsch pairwise alignment algorithms

when the best full-length template was selected for each candidate

sequence.

Found at: doi:10.1371/journal.pone.0008230.s003 (0.11 MB

PDF)

Table S4 Summary of alignment improvement for various

regions extracted from candidate sequences using the blastn,

Gotoh, or Needleman-Wunsch pairwise alignment algorithms

when the best region-specific template was selected for each

candidate sequence.

Found at: doi:10.1371/journal.pone.0008230.s004 (0.10 MB

PDF)

Acknowledgments

I thank Sarah Westcott for helping to incorporate my original source code

for the aligner into mothur and the numerous mothur users who have

helped to test the aligner software.

Author Contributions

Conceived and designed the experiments: PS. Performed the experiments:

PS. Analyzed the data: PS. Contributed reagents/materials/analysis tools:

PS. Wrote the paper: PS.

References

1. Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS

Comp Biol 2: e92.

2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, et al. (2005)
Diversity of the human intestinal microbial flora. Science 308: 1635–1638.

3. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, et al. (2006)

Microbial diversity in the deep sea and the underexplored ‘‘rare biosphere’’.

Proc Natl Acad Sci U S A 103: 12115–12120.

4. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al.
(2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484.

5. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program

for defining operational taxonomic units and estimating species richness. Appl
Environ Microbiol 71: 1501–1506.

6. Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex,

handedness, and washing on the diversity of hand surface bacteria. Proc Natl

Acad Sci U S A 105: 17994–17999.

7. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple
sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:

3497–3500.

8. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences
with MAFFT. Methods Mol Biol 537: 39–64.

9. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with

reduced time and space complexity. BMC Bioinformatics 5: 113.

10. Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, et al. (2007)

Microbial population structures in the deep marine biosphere. Science 318:
97–100.

11. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, et al.

(2009) Reproducible community dynamics of the gastrointestinal microbiota
following antibiotic perturbation. Infect Immun 77: 2367–2375.

12. Sun Y, Cai Y, Liu L, Yu F, Farrell ML, et al. (2009) ESPRIT: estimating species

richness using large collections of 16S rRNA pyrosequences. Nucleic Acids Res

37: e76.

13. Gardner PP, Wilm A, Washietl S (2005) A benchmark of multiple sequence
alignment programs upon structural RNAs. Nucleic Acids Res 33: 2433–2439.

14. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA

alignments. Bioinformatics 25: 1335–1337.

15. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, et al. (2009) The Ribosomal
Database Project: improved alignments and new tools for rRNA analysis.

Nucleic Acids Res 37: D141–145.

16. Ludwig W, Strunk O, Westram R, Richter L, Meier H, et al. (2004) ARB: A

software environment for sequence data. Nucleic Acids Res 32: 1363–1371.

17. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, et al. (2007) SILVA: a
comprehensive online resource for quality checked and aligned ribosomal RNA

sequence data compatible with ARB. Nucleic Acids Res 35: 7188–7196.

18. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006)
Greengenes, a chimera-checked 16S rRNA gene database and workbench

compatible with ARB. Appl Environ Microbiol 72: 5069–5072.

19. DeSantis TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, et al. (2006)
NAST: a multiple sequence alignment server for comparative analysis of 16S

rRNA genes. Nucleic Acids Res 34: W394–399.

20. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 25: 3389–3402.

21. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M,
eds. Nucleic Acid Techniques in Bacterial Systematics. New York: Wiley. pp

115–175.

22. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, et al. (2009) A
comprehensive survey of soil acidobacterial diversity using pyrosequencing and

clone library analyses. ISME J 3: 442–453.

23. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based
assessment of soil pH as a predictor of soil bacterial community structure at the

continental scale. Appl Environ Microbiol 75: 5111–5120.

24. Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG, et al. (2009)
Characterization of airborne microbial communities at a high elevation site and

their potential to act as atmospheric ice nuclei. Appl Environ Microbiol 75:
5121–5130.

25. Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, et al.

(2009) Regulation of myocardial ketone body metabolism by the gut microbiota
during nutrient deprivation. Proc Natl Acad Sci U S A 106: 11276–11281.

26. Schellenberg J, Links MG, Hill JE, Dumonceaux TJ, Peters GA, et al. (2009)

Pyrosequencing of the chaperonin-60 universal target as a tool for determining
microbial community composition. Appl Environ Microbiol 75: 2889–2898.

27. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an

antibiotic on the human gut microbiota, as revealed by deep 16S rRNA
sequencing. PLoS Biol 6: e280.

28. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, et al. (2007)

Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:
283–290.

29. Ukkonen E (1995) Online construction of suffix trees. Algorithmica 14: 249–260.

30. Tichy WF (1984) The string-to-string correction problem with block moves.
ACM Trans Comput Syst 2: 309–321.

DNA Sequence Aligner

PLoS ONE | www.plosone.org 8 December 2009 | Volume 4 | Issue 12 | e8230

31. Needleman SB, Wunsch CD (1970) A general method applicable to the search

for similarities in the amino acid sequence of two proteins. J Mol Biol 48:
443–453.

32. Myers EW, Miller W (1988) Optimal alignments in linear space. Comput Appl

Biosci 4: 11–17.
33. Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol

Biol 162: 705–708.

34. Gusfield D (1997) Algorithms on strings, trees, and sequences: computer science

and computational biology. New York: Cambridge University Press. pp
228–229.

35. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. (2009)

Introducing mothur: Open source, platform-independent, community-supported
software for describing and comparing microbial communities. Appl Environ

Microbiol;doi:10.1128/AEM.01541-09.

DNA Sequence Aligner

PLoS ONE | www.plosone.org 9 December 2009 | Volume 4 | Issue 12 | e8230

