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Abstract

The advent of next generation sequencing has coincided with a growth in interest in using these approaches to better
understand the role of the structure and function of the microbial communities in human, animal, and environmental
health. Yet, use of next generation sequencing to perform 16S rRNA gene sequence surveys has resulted in considerable
controversy surrounding the effects of sequencing errors on downstream analyses. We analyzed 2.76106 reads distributed
among 90 identical mock community samples, which were collections of genomic DNA from 21 different species with
known 16S rRNA gene sequences; we observed an average error rate of 0.0060. To improve this error rate, we evaluated
numerous methods of identifying bad sequence reads, identifying regions within reads of poor quality, and correcting base
calls and were able to reduce the overall error rate to 0.0002. Implementation of the PyroNoise algorithm provided the best
combination of error rate, sequence length, and number of sequences. Perhaps more problematic than sequencing errors
was the presence of chimeras generated during PCR. Because we knew the true sequences within the mock community and
the chimeras they could form, we identified 8% of the raw sequence reads as chimeric. After quality filtering the raw
sequences and using the Uchime chimera detection program, the overall chimera rate decreased to 1%. The chimeras that
could not be detected were largely responsible for the identification of spurious operational taxonomic units (OTUs) and
genus-level phylotypes. The number of spurious OTUs and phylotypes increased with sequencing effort indicating that
comparison of communities should be made using an equal number of sequences. Finally, we applied our improved
quality-filtering pipeline to several benchmarking studies and observed that even with our stringent data curation pipeline,
biases in the data generation pipeline and batch effects were observed that could potentially confound the interpretation
of microbial community data.

Citation: Schloss PD, Gevers D, Westcott SL (2011) Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S rRNA-Based Studies. PLoS
ONE 6(12): e27310. doi:10.1371/journal.pone.0027310

Editor: Jack Anthony Gilbert, Argonne National Laboratory, United States of America

Received July 13, 2011; Accepted October 13, 2011; Published December 14, 2011

Copyright: � 2011 Schloss et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: PDS and SLW were supported by grants from the National Institutes for Health (1R01HG005975-01) and National Science Foundation (award
#0743432), and DG was supported by a grant from the National Institutes for Health (NIHU54HG004969). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: pschloss@umich.edu

Introduction

The advent of 16S rRNA gene sequencing has revolutionized

how microbial ecologists understand the bacterial and archaeal

world around them [1]. Although the general approach has known

limitations (e.g. low rate of evolution, lack of correlation with

organism function, and variable copy number), no other molecular

marker has emerged that is found in all organisms, has as low a

rate of horizontal gene transfer and recombination, or has

sufficient genetic information to differentiate closely related

organisms. Even before the advent of next generation sequencing,

the 16S rRNA gene was the most well represented gene in

GenBank. Inherent in every microbial ecology experiment is the

hypothesis that changes in the microbial community’s structure

will affect the community’s function. The recent advent of next

generation DNA sequencing has greatly facilitated the ability to

broadly test this hypothesis. It is now possible to obtain thousands

of sequences per sample using pyrosequencing for the same cost of

sequencing dozens of sequences by Sanger-based sequencing

technology [2]. A limitation of this approach is that it is not

possible to obtain a full-length sequence of the 16S rRNA gene. To

overcome this limitation, PCR primers have been designed to

target one or more of the 9 variable regions within the gene; there

is no region that has received universal acceptance by the field.

The creation of DNA barcodes, short DNA sequences are

included upstream of the PCR primer, has enabled investigators

to multiplex numerous samples has enabled investigators to

allocate vast sequencing resources to numerous samples [3].

Furthermore, these improvements allow for more robust experi-

mental designs; whereas biological or technical replicates were

rarely obtained using Sanger technology, it has since become

expected [4].

Within the biomedical sciences, analysis of 16S rRNA genes has

had a significant impact on our knowledge of novel pathogens

including the causative agent of Whipple’s disease [5] and has

forced a reconsideration of Koch’s postulates in light of molecular

data [6]. It has been widely suggested that Crohn’s disease,

obesity, periodontitis, eczema, cystic fibrosis, and myriad other

diseases affecting nearly every part of the human body are caused

not by single pathogens, but by consortia of microbes. The

biomedical version of the structure-function hypothesis, the

dysbiosis hypothesis, suggests that alterations in the structure and
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stability of microbial communities can bring about changes in

human health and disease [7]. To test this hypothesis on a large

scale, the Human Microbiome Project (HMP), funded by the US

National Institutes of Health, and MetaHit, funded by the

European Commission, have pursued a number of studies to

define the microbial biodiversity associated with health and disease

[8,9]. For example, the HMP recruited 300 individuals, who were

sampled 2 or 3 times at 15 (men) or 18 (women) body sites with the

goal of characterizing the structure and function of the normal

microbiome [8]. Similar efforts are underway to address how

deviations in the structure and function of the microbiome relate

to disease.

In spite of great excitement to pursue novel research questions,

the sequencing technology has developed at such a fast rate that

there have been only modest gains in improving the quality of the

raw data and in understanding how that quality affects

experimental design and data interpretation. Although there is

interest applying Illumina’s sequencing platform to whole

metagenome shotgun sequencing [10], 16S rRNA gene sequenc-

ing has primarily been performed using Roche-454’s sequencing

platform. This platform uses a sequencing-by-synthesis approach

where flows of individual nucleotides are passed over a picotitre

plate and a fluorescent signal is generated proportional to the

number of times that nucleotide is incorporated. In the current GS

FLX Titanium protocol, 800 flows are performed. The Roche-454

platform was originally developed for genome sequencing, which

does not require stringent quality filtering measures since multiple

reads are assembled to create a consensus sequence. In other

words, although error rates for individual reads may be high, if

sufficient reads are obtained, the error rate of the assembled

genomes can be very low. In contrast, analyses of 16S rRNA gene

sequences do not assemble reads. Therefore, any sequencing error

will cause the sequence to be naively portrayed as arriving from a

novel bacterium. This has created a debate in the environmental

microbiology field over how much of the ‘‘rare biosphere’’ is a

product of sequencing error [11–14]. Regardless of the outcome to

the debate, investigators need to understand the quality of their

data and how to reduce errors. Ultimately, downstream analyses

will be influenced by these errors.

There are multiple sources of bias and error in a 16S rRNA

gene sequencing survey. We define biases as a misrepresentation of

the relative abundances of microbial populations in a sample and

errors as a misrepresentation of an actual sequence due to PCR

amplification and sequencing. The method of DNA extraction and

purification, PCR primer selection and cycling conditions, actual

community composition, and number of 16S rRNA gene copies

per genome can all affect whether the relative abundances of 16S

rRNA gene sequences being sequenced are the same as the

bacterium’s relative abundance in the original sample [15–19].

There are three primary sources of error. First, PCR polymerases

typically have error rates of 1 substitution per 105–106 bases [20].

Second, when amplifying DNA fragments from a heterogeneous

template, there is a risk of chimera formation when incomplete

PCR products serve as primers to amplify related fragments; the

rate of chimerism is thought to range from 5 to 45% [21]. Finally,

errors are introduced in sequencing, regardless of the technology.

The Roche-454 platform is known to have difficulties representing

homopolymers (i.e. stretches of DNA containing the same base)

and has a reported error rate of 0.0100 to 0.0200 (i.e. number of

errors per total base calls) for individual sequence reads [2].

Because of their relative rates, sequencing errors and chimeras are

of most concern.

Sequencing error rates have generally been measured by

sequencing collections of 16S rRNA gene fragments with a known

sequence (i.e. mock communities). Four general approaches have

been taken to reducing sequencing errors and their effects. The

first approach was to remove sequence reads that had features

correlated with sequencing errors (e.g. ambiguous base calls,

mismatches to primers). Huse and colleagues [12] found that if

they removed any read that had ambiguous base calls, mismatches

to the PCR primer, or were shorter or longer than expected, then

the observed error rate was reduced to 0.0016. The second

approach was to trim regions of the sequence associated with low

quality scores. Kunin and colleagues [14] sequenced the 16S

rRNA gene from E. coli and expected to observe 1 operational

taxonomic unit (OTU) when clustering at a 3% cutoff, but instead

observed 16. When they used LUCY to identify regions within

each sequence that had an average quality score greater than 27

they obtained the correct number of OTUs [22]. The third

approach was the development of two denoising algorithms,

PyroNoise and DeNoiser, which correct the base calls by modeling

the original flowgram data [23–25]; unfortunately, these methods

have received limited application because they require high

computational resources and have had implementations that are

difficult for most investigators to use. Two less computationally

demanding denoising algorithms, single linkage pre-clustering and

SeqNoise, have also been developed to remove sequencing errors

[13,24]. Although these three approaches reduce the error rate, a

fourth set of approaches has developed heuristics to essentially fit

the observed number of OTUs to the expected number of OTUs

without concern for the error rate. These have included removing

sequences that cannot be taxonomically classified [26], using

pairwise sequence alignments instead of a multiple sequence

alignment [13], clustering sequences by the average neighbor

algorithm instead of the furthest neighbor algorithm [13], using

broad OTU definitions [14], and removing sequences that are

below an abundance threshold has also been applied to Illumina-

generated sequence data [27]. These studies generally have had

the goal of reducing the number of spurious OTUs and

phylotypes, not minimizing the actual error rate. This has the

effect of limiting the generalizability of results to other experi-

mental frameworks.

Although there are a number of steps that can be taken to

reduce the rate of chimerism [21,28,29], three bioinformatic

approaches have recently been developed to identify chimeras and

remove them from the analysis. First, Haas and colleagues [21]

developed the ChimeraSlayer algorithm, which they showed to be

superior to Bellerephon [30] and Pintail [31], especially for short

sequences and in cases where the parents of the chimera were

closely related to each other. Second, Quince and colleagues [24]

developed Perseus, which does not use a reference database, but

does require a training set of sequences similar to the sequences

being characterized. Finally, Edgar and colleagues [32] developed

Uchime, which showed improved performance over Chimera-

Slayer, especially in cases where the chimera has more than two

parents; Uchime’s performance was comparable to that of Perseus.

As each of these studies discussed, there is a tradeoff between the

specificity and sensitivity that can be modulated to serve an

investigator’s needs; however, the creators of the tools have

emphasized specificity over sensitivity. It is important to note that

chimeras are not sequencing errors and because, by definition,

there is not a single reference sequence to map the chimera to,

chimera frequency should be treated separately from the

sequencing error rate.

As part of the Human Microbiome Project, three benchmarking

studies were implemented to evaluate the implementation of a

standardized operating procedure (SOP) by the sequencing centers

at the Baylor College of Medicine (BCM), Broad Institute (BI), J.
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Craig Venter Institute (JCVI), and the Washington University

Genome Sciences Center (WUGSC). First, DNA from the V13,

V35, and V69 regions of the 16S rRNA gene were amplified and

sequenced from a mock community representing the genomic

DNA from 21 isolates. Second, DNA from the same regions of a

single stool sample was PCR amplified and sequenced. For these

two studies the sequencing centers performed between 1 and 5

sequencing runs and each run including three replicates for each

region using the Roche 454 GS FLX Titanium platform. The goal

of these two studies was to assess the robustness of the SOP by

measuring bias, sequencing error rates, and intra and inter-

sequencing center variation. Between the 10 total runs, there were

a total of 30 mock community and stool sample replicates per

region of the 16S rRNA gene and a total of 2.76106 sequences.

These data are part of Project SRP002397 in the NCBI Short

Read Archive. The third study sought to benchmark the SOP by

performing a pilot of the full HMP 16S rRNA gene sequencing

effort. The pilot study consisted of sampling 15 and 18 body sites

from 12 men and 12 women, respectively. The DNA was isolated

at BCM and the 396 samples were randomly sent to two of the

four sequencing centers for PCR and sequencing of the V13 and

V35 regions of the 16S rRNA gene. The centers attempted to

obtain at least 5,000 sequence reads from each sample; there were

a total of 18.76106 sequences in the dataset. These data are part of

Project SRP002012 in the NCBI Short Read Archive. In the

present study we used these massive datasets to create a pipeline

that minimized the sequencing error rate and incidence of

chimeras. We then implemented the pipeline to understand the

effect of these sources of error on the interpretation of microbiome

data.

Results

Basic characteristics of mock community sequence data
We first assessed the effects of PCR and sequencing-generated

polymorphisms on the error rate of non-chimeric sequences. The

average raw error rate across all regions, replicates, and runs was

0.0061 (standard deviation = 0.0013; Fig. 1B). We compared the

intra-run error rate to the overall error rate and observed that 9 of

the 10 sequencing runs had a significantly different mean from the

overall error rate (all p,0.05). We also observed that the V69

region had a significantly higher error rate (0.0066; sd = 0.0015)

compared to the V13 and V35 regions (0.0058; sd = 0.0012;

p = 0.008). Sequencing errors accumulated toward the distal end

of the sequence and the average Phred quality scores mirrored the

observed errors along the length of the sequence (Fig. 2A). The

insertion and deletion rates were 0.0024 (standard devia-

tion = 0.0006) and 0.0019 (sd = 0.0008), respectively. Substitutions

were less common and occurred at a rate of 0.0016 (sd = 0.0003).

Finally, ambiguous base calls occurred at a rate of 0.0002

(sd = 0.0001). Ambiguous base calls, insertions, substitutions, and

matches showed a clear association with the quality score for the

base call (Fig. 2B). Interestingly, the distribution of quality scores

for substitutions was bimodal suggesting that the lower quality

substitutions were sequencing errors and the higher quality

substitutions were due to PCR artifacts or chimeras whose parent

sequences were from different operons in the same genome and

were not detected by our approach because they were less than

3 bp different from each other (Fig. 2C).

Identifying features of low quality sequences
Based on these general characteristics we sought to identify

traits that were associated with low-quality sequences. First, we

calculated the error rate of sequences that had between 0 and 2

mismatches to the barcode sequence and between 0 and 3

mismatches to the primer sequence. The error rate of sequences

with 0 or 1 mismatches to the barcode had an error rate of 0.0056

(sd = 0.0013) and the sequences with 2 mismatches to the barcode

had an error rate of 0.0101 (sd = 0.0118; p,0.001). Similarly,

sequences that had two or fewer mismatches to the primer had an

error rate of 0.0056 (sd = 0.0013), whereas sequences with three

mismatches to the primer had an error rate of 0.0073 (sd = 0.0063;

p = 0.004). Second, sequences that had one or more ambiguous

base call had an error rate of 0.0111 (sd = 0.0014) and those

without ambiguous base calls had an error rate of 0.0058

(sd = 0.0013; p,0.001). Third, sequences shorter than 200 bp

had an error rate of 0.0163 (sd = 0.0053) and those longer than

200 bp had an error rate of 0.0059 (sd = 0.0014; p,0.001).

Fourth, sequences that had homopolymers longer than 8

nucleotides (i.e. a string of consecutive and identical nucleotides)

had an error rate of 0.0663 (sd = 0.0336) and those with

homopolymers of 8 nucleotides or shorter had a significantly

lower error rate of 0.0061 (sd = 0.0013). Finally, in each dataset

there were sequences that did not align to the expected region of

the 16S rRNA gene and were removed because they were clearly

of dubious quality. Based on these results, we decided to cull

sequences with more than 1 mismatch to the barcode, 2

mismatches to the primer, had an ambiguous base call, were

shorter than 200 bp, had a homopolymer longer than 8 bp and

that aligned to the incorrect region within the 16S rRNA gene.

Based on these criteria the overall error rate decreased to 0.0056

and resulted in removing, on average, 15.9% of the sequences

(sd = 10.9; Fig. 1, ‘‘Basic’’).

Trimming of sequences
The association between error rates and quality scores shown in

Fig. 2 suggested that if it were possible to identify break points

where quality score criteria were no longer met, we could then

trim sequences to those break points and reduce the overall error

rates. First, we used a naı̈ve approach based on the data presented

in Fig. 2, which showed substantially lower error rates in the first

250 bp. Trimming sequences to 250 bp reduced the overall error

rate to 0.0017 (Fig. 1B, ‘‘First 250 bp’’). This approach was not

ideal because it would not translate well to other platforms and

might still allow base calls to pass that were of low quality. Instead,

we sought an approach using the quality scores that could replicate

this error rate. First, we implemented a hard cutoff by trimming

each sequence at the first base that had a quality score below 20 or

25. This reduced the error rate by an average of 6.2 to 8.0-fold

when compared to the Basic approach. Although use of a hard

cutoff at a quality score below 25 reduced the error rate to 0.0007,

it also reduced the number of non-chimeric sequence reads longer

than 200 bp by 63.5% (Fig. 1, ‘‘Hard cutoff’’). Second, we

calculated the rolling average of the quality scores starting at the

first base and trimmed the sequences when the average quality

score dropped below 30 or 35 (Fig. 1, ‘‘Rolling average’’). Neither

threshold performed better than merely keeping the first 250 bp

of each sequence. Third, we used a sliding window approach

where the average quality score within a 50 or 100-bp window

was calculated and when the average dropped below 30 or 35,

the sequence was trimmed (Fig. 1, ‘‘Sliding window’’). Requiring

an average quality score of 35 over a 50 bp window resulted in

error rates and average total number of sequences that were not

meaningfully different from those observed using the sharp cutoff

with a quality threshold of 20 (mean = 0.0010; sd = 0.0003).

Based on our goal of retaining as many sequences as possible that

were longer than 200 bp after removing the barcode and primer,

while maintaining the lowest possible error rate, we settled upon

Handling Artifacts in Analysis of 16S rRNA Genes
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using a sliding 50-bp window with an average quality score of 35

within the window. This was approach was selected because the

resulting distribution of the number of sequences was broader

than we observed using the sharp cutoff approach (Fig. 1B).

Finally, because the 16S rRNA gene does not evolve uniformly

over its length and the sequences resulting from this trimming

algorithm generated sequences of varying length, it was necessary

to further trim the sequences to a region where the average

sequence was 200 bp long and all of the sequences started and

ended in the same alignment positions [33,34]. This trimming

further reduced the error rate to 0.0008 (sd = 0.0004; Fig. 3) and

insured that evolutionarily consistent regions were being

compared.

Denoising of flowgrams
We also explored the use of the PyroNoise algorithm, which

reduces the sequencing error rate by correcting the original

flowgram data using an expectation-maximization algorithm. We

re-implemented this algorithm in the mothur software package as

shhh.flows to take advantage of accelerated clustering algorithms

and to make the algorithm more accessible to other researchers.

For all of our analyses we removed any sequence with more than

one mismatch to the barcode or more than two mismatches to the

primer. Next, we used the Roche-454 determined quality cutoffs

to identify those flowgrams that contained between 360 and 720

flows, as suggested in the PyroNoise documentation. Translation

of these uncorrected flowgrams to DNA sequence resulted in an

Figure 1. Effect of various sequence culling, trimming, and de-noising strategies on the number of non-chimeric reads that were
longer than 200 bp and their error rates using sequence data generated by sequencing the 16S rRNA gene sequence of the same
mock community. The horizontal lines represent the average across all samples within that treatment.
doi:10.1371/journal.pone.0027310.g001
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average error rate of 0.0034 (sd = 0.0006; Fig. 1, ‘‘Translated

flows’’). After processing these flowgrams through shhh.flows the

error rate dropped to 0.0016 (sd = 0.0006; Fig. 1, ‘‘shhh.flows’’).

Based on our observation that sequence quality dropped after

250 bp, we trimmed all of the flowgrams to 350, 450, or 550 flows

and processed the flowgrams through shhh.flows; after removing

the barcode and primer, the resulting sequences were approxi-

mately 200, 250, or 300 bp long, respectively. Trimming of

flowgrams to 350 or 450 flows resulted in an error rate of 0.0006

(sd = 0.0005); however, when we trimmed the flowgrams to 550

flows the average error rate increased to 0.0010 (sd = 0.0006).

There were 7% fewer reads when the flowgrams were 450 flows

long compared to trimming the flows to 350, but the sequences

were approximately 30% longer. Compared to the output of the

sliding window approach, the denoised flowgrams that were 450

flows long had a small improvement in average error rate and

were approximately 50 bp longer. In addition, there were an

average of 17.0% more sequences using shhh.flows than by using

the sliding window. Although the shhh.flows approach is superior

to the quality score-based trimming approach, we decided to

pursue the sequences trimmed to 450 flows for our subsequent

analysis in parallel to those obtained using the sliding window

approach because of the high computational effort required for the

shhh.flows approach.

Denoising of sequences
We used two recently proposed approaches to remove lingering

PCR amplification and sequencing errors. First, we modified the

single-linkage pre-clustering algorithm proposed by Huse and

colleagues [13], which joined sequence frequencies of sequences

that were within a specified distance of each other assuming that

the more abundant sequence was correct. Their original method

used a distance matrix as the input; to save computational effort,

we performed the clustering on the actual aligned sequences and

counted the number of insertions, deletions, and substitutions

between pairs of sequences. When we used the output of the

quality trimming algorithm and the output of shhh.flows, the error

rate for both approaches dropped to 0.0004 (sd = 0.0004) and

0.0002 (sd = 0.0002) when we allowed 1 or 2 mismatches to the

more abundant sequence, respectively (Fig. 3). One limitation of

this method is the risk of allowing too many mismatches, which

would then limit the ability to cluster sequences into OTUs at fine-

scale distance levels. For example, 2 mismatches between a rare

and abundant sequence over 200 bp represents a 1% difference;

however, if two rare sequences are each 2 bp different from the

abundant sequence, they can be up to 4 bp or 2% different from

each other. Allowing up to 3 mismatches over 200 bp would allow

sequences that are as much as 3% different from each other to be

pre-clustered making it difficult to resolve OTUs at the common

3% cutoff. Based on these observations, we recommend allowing 1

mismatch for every 100 bp of sequence data. Second, we

implemented the SeqNoise algorithm in mothur as shhh.seqs.

This algorithm is similar to shhh.flows except that the inputs are

sequences and a model that describes rates of substitutions and

homopolymeric insertions and deletions [24]. This approach uses

the parameter sS to modulate the variation differences between

the corrected sequence and the observed sequences. When we

applied this algorithm to the data processed by the quality

trimming approach using sS values of 0.01, 0.02, and 0.04 we

observed error rates of 0.0002 (sd = 0.0002), 0.0001 (sd = 0.0001),

and 0.0001 (sd = 0.0001), respectively; when applied to the output

of shhh.flows we observed error rates of 0.0003 (sd = 0.0004),

0.0002 (sd = 0.0002), and 0.0001 (sd = 0.0002), respectively (Fig. 3).

The reduction in error rates is offset by the challenge that as sS

increased, the median maximum difference between the idealized

sequence and the corrected sequences was 4, 6, and 11 bp, for the

three sS values, respectively. Considering the possible loss of

resolution for OTUs defined by small distances when using larger

Figure 2. A typical error profile (accession SRX020131, V35,
replicate 1) generated by sequencing the mock community
without any sequence curation measures.
doi:10.1371/journal.pone.0027310.g002
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sS values, we favor the use of an sS value of 0.01. Since the pre-

clustering approach gives the investigator the ability to directly set

the maximum difference between sequences and the error rate was

comparable to those generated by shhh.seqs, the remainder of our

study uses data processed using the pre-clustering approach with a

maximum difference of 2 bp between the abundant and more rare

sequence.

Contribution of chimeras
To this point, our results have measured the sequencing error

rate independent of the chimeras known to populate sequence

collections. Because we knew the actual sequences and the

potential chimeras they could form, we were able to identify

those sequences that were chimeric. Using the sequencing runs

originating from BCM, BI, and JCVI, we found that 5.5%

(sd = 1.4) of the raw sequence reads were chimeric. In contrast, on

average, 15.9% (sd = 5.5) of the raw sequence reads from runs

originating at the WUGSC were chimeric (p,2610216); there was

no significant difference in rate of chimerism between regions

(p = 0.84). Using the sliding window approach and pre-clustering,

we found that the overall chimera rate dropped to an average of

2.3% (sd = 1.6%) with the BCM, BI, and JCVI sequencing centers

having an average chimera rate of 1.9% (sd = 0.4%) and WUGSC

having an average chimera rate of 4.2% (sd = 2.4%).

Chimera removal
We explored several chimera removal strategies using chimer-

a.slayer, Perseus, and Uchime. To measure the specificity and

sensitivity of these three approaches, we only used a single

representative of each sequence that emerged from the sequence

trimming and denoising approaches. We decided to place chimera

removal at the end of the overall sequence curation pipeline since

at that point in the pipeline we had the greatest confidence in the

abundance of each sequence type. We first tested the ability of

chimera.slayer and Uchime to identify chimeras using a chimera-

free reference database (i.e. the Gold reference set [21]; Table 1);

Perseus cannot be used with a reference database. For both

sequence curation pipelines, Uchime provided approximately a

10-percentage point greater sensitivity over chimera.slayer and

little difference in specificity. We next tested the ability of

chimera.slayer, Uchime, and Perseus to identify chimeras without

a reference database. This approach assumes that more abundant

sequences are less likely to be chimeric sequences and can thus be

used as the reference dataset [23]. With this database-independent

approach, Uchime and Perseus outperformed chimera.slayer and

Uchime and Perseus had comparable sensitivity and specificity

(Table 1). When we compared the database-dependent and –

independent chimera checking methods, using Uchime in a

database-dependent manner performed slightly better than the

database-independent approaches (Table 1). Regardless, we

decided to pursue the database-independent approach. This

choice was made because the Gold reference collection only

contains 16S rRNA gene sequences from cultured bacteria and

was not expected to perform as well on real samples that contained

as yet uncultured bacteria and archaea. Although the differences

between Uchime and chimera.perseus were minimal, we decided

Figure 3. Effect of trimming sequences to the same alignment coordinates and using the pre-clustering or shhh.seqs algorithm on
sequencing error rates when used within the sliding window and shhh.flows pipelines. The horizontal lines represent the average error
rate across all samples within that treatment.
doi:10.1371/journal.pone.0027310.g003
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to use Uchime for the remainder of this study because it had a lower

false discovery rate and because of the previously reported faster

execution times [32]. After using the database-independent

implementation of Uchime, 34.6 (sd = 8.5) and 24.5% (sd = 10.8)

of the remaining unique sequences were chimeric (i.e. false negative

rate) and when the frequency of redundant sequences were included

we found that 0.9% and 1.2% of the sequences were chimeric by the

sliding window and shhh.flows pipelines, respectively.

Overall patterns in error rates and effects on clustering
into OTUs and phylotypes

Next, we were interested in the number of OTUs and

phylotypes that were observed using both pipelines after

optimizing the pipelines based on error rates. First, we used the

average neighbor clustering algorithm to assign sequences to

OTUs at a distance threshold of 0.03 [34]. Using reference

sequences of the same length and the same region, we expected to

observe between 17 and 19 OTUs. Among the unprocessed

sequence collections, the median number of spurious OTUs was

176. Using the shhh.flows pipeline we observed fewer spurious

OTUs for the V13 and V69 sequence collections than we did

using the sliding window pipeline and the number of spurious

OTUs for the V35 sequences were comparable by both

approaches (Table 2). Because we were not able to identify all of

the chimeras in the sequence collections using Uchime, we

hypothesized that many of the spurious OTUs were chimeric.

Indeed, removing the true chimeras that were not detected by

Uchime (see methods for description of detecting true chimeras)

Table 1. Ability of chimera.slayer, Uchime, and chimera.perseus to detect reliably chimeras within the sliding window and
shhh.flows pipelines when using the Gold sequence collection or the dataset itself as the reference.

Sequence curation
pipeline

Chimera detection
algorithm Database Sensitivitya,b Specificity

False discovery
rate

Initial %
chimeras Final % chimeras

Sliding window chimera.slayer Gold 68.7 (11.8) 95.0 (3.4) 3.7 (3.4) 67.8 (11.9) 39.6 (8.4)

Self 66.5 (11.8) 94.2 (3.7) 4.4 (4.1) 67.8 (11.9) 41.4 (9.3)

Uchime Gold 79.2 (8.0) 93.7 (3.7) 4.1 (3.3) 67.8 (11.9) 30.6 (8.7)

Self 74.5 (10.5) 94.4 (3.7) 4.0 (3.7) 67.8 (11.9) 34.6 (8.5)

chimera.perseus Self 76.0 (5.9) 91.6 (5.0) 5.6 (4.9) 67.8 (11.9) 34.8 (10.6)

shhh.flows chimera.slayer Gold 79.7 (7.7) 95.9 (2.6) 1.9 (1.2) 71.8 (7.3) 33.8 (13.2)

Self 79.5 (7.1) 94.4 (3.6) 2.5 (1.4) 71.8 (7.3) 34.2 (12.3)

Uchime Gold 89.6 (6.3) 93.7 (3.9) 2.6 (1.7) 71.8 (7.3) 20.8 (11.3)

Self 87.3 (5.8) 93.8 (4.0) 2.6 (1.6) 71.8 (7.3) 24.5 (10.8)

chimera.perseus Self 87.4 (6.8) 92.7 (4.3) 2.9 (1.5) 71.8 (7.3) 24.4 (12.4)

aAll values in this table were calculated using unique sequences.
bThe standard deviation is given in parentheses.
doi:10.1371/journal.pone.0027310.t001

Table 2. Median number of spurious OTUs and genera identified in mock community sequence collections after removing
chimeras identified using Uchime and removing all true chimeras within the two pipelines.

Region Pipeline (Average error rate) Chimera Removal
Median difference from
number of expected OTUs

Median difference from
number of expected genera

V13 Basic Complete 168 11

Sliding window (0.0004) Partial 40 1

Complete 23 1

shhh.flows (0.0001) Partial 10 2

Complete 7 2

V35 Basic Complete 156–157 36–37

Sliding window (0.0001) Partial 10 4–5

Complete 5 1

shhh.flows (0.0001) Partial 11–12 5–6

Complete 4 2

V69 Basic Complete 220–221 51–52

Sliding window (0.0002) Partial 21 8–9

Complete 9–10 5

shhh.flows (0.0001) Partial 12 4

Complete 12 4

doi:10.1371/journal.pone.0027310.t002
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reduced the number of spurious OTUs considerably (Table 2).

Next, we assigned sequences to genus-level phylotypes using the

naı̈ve Bayesian classifier trained on the RDP’s taxonomic outline

and implemented in mothur [34,35]. Again, using the reference

sequences that corresponded to each region and sequence

collection we expected to observe either 17 or 18 genera per

sample. Among the unprocessed sequence collections, the median

number of spurious genera was 37. Once sequences were

processed by either pipeline, the median number of spurious

genera per sample varied between 1 and 9 (Table 2). When the

non-detected chimeras were removed, the median number of

spurious genera varied between 1 and 5. The number of spurious

genera was comparable between the two pipelines (Table 2). Even

though the sequencing error rate was reduced by 30-fold it still was

not possible to obtain the expected number of OTUs and genera.

Controlling for uneven sampling
We observed that the number of sequences obtained for a

sample had a strong correlation to the number of observed OTUs

(e.g. R = 0.50 by shhh.flows) and a weak correlation to the number

of observed genera (e.g. R = 0.30 for shhh.flows); a similar result

has been previously observed [14]. By randomly selecting

sequences from each sample processed by shhh.flows so that each

sample had the same number of sequences (n = 6,659 for V13,

n = 4,615 for V35, and n = 3,129 for V69) we observed a median

of 5, 4, and 3 spurious OTUs and 1, 2, and 1 spurious genera for

the V13, V35, and V69 regions. Standardizing sample sizes is

occasionally used because numerous alpha and beta diversity

metrics are sensitive to sampling effort; our analysis underscores

the need to standardize the number of sequences per sample

because of the sensitivity of the number of spurious OTUs and

genera to sampling effort.

Biases related to PCR amplification
Although there are numerous possible sources of bias in

generating sequence data, in this study we were able to address

those resulting from PCR amplification. Fig. 4 clearly shows that

the distribution of relative abundances among the raw reads was

skewed. Since replicate copies of the mock community were not

independently generated, it was not possible to ascertain what

fraction of the skew is due to error in assembling the DNAs or

PCR bias. Table 3 lists the primer sequences that were used to

PCR amplify the three regions and their homology to members of

the mock community. Although each of these primers would be

able to amplify DNA from all of the bacterial genomes, those

sequences that did not have perfect homology to the primer

amplified at a lower efficiency than those with perfect homology.

The primers used to amplify the V13 region had the most

dramatic effects on the relative abundance compared to the other

regions. For instance, A. baumannii, E. coli, and P. aeruginosa V13

sequences were nearly undetectable in the raw sequence pool. This

result can be explained by a one base mismatch in the middle of

the forward primer sequence, which is a common variant among

many bacteria and can be recovered using a degenerate form of

the primer [36]. Interestingly, most of the differences observed in

the relative abundances of each sequence type in the raw reads

could be explained by mismatches to primers suggesting that

amplification bias was not significant.

Biases related to analysis pipeline
There were few obvious biases observed in the relative

abundance of each sequence type as processed by the sliding

window and shhh.flows pipelines. Comparing the relative

abundances in the raw reads to those that were obtained after

the ‘‘Basic’’ sequence curation revealed a large difference in the

V35 data for S. aureus and S. epidermidis by both pipelines. This is

explained by the fact that the first 260 bp that were sequenced in

this region were identical for these two organisms. Unique to the

sliding window pipeline, we observed a large decrease in the

relative abundance of S. aureus in the V35 data. Unique to the

shhh.flows pipeline, we observed a large decrease in the relative

abundance of S. aureus in the V13 data. There were no differences

in rates of chimerism for this population or remarkable features of

the pipeline that explained this bias, suggesting that the bias may

be attributable to biases inherent in the ability of the sequencing

platform to generate similar quality data across sequence types.

Biases between sequencing centers
We generated a non-metric multidimensional scaling (NMDS)

plot of distances calculated using the ThetaYC measure of

community dissimilarity for each region after randomly sub-

sampling the samples so that they would each have the same

number of sequences (Fig. 5). Interestingly, the mock community

samples clustered by sequencing center and then by sequencing

run. To explore this effect further, we analyzed 16S rRNA gene

sequences from a control DNA preparation from a single human

stool sample that were generated in parallel to the 90 mock

community sequence sets. We processed the 90 sequence

collections generated from the same stool sample using the

shhh.flows pipeline, removed any OTUs that were classified as

being derived from a chloroplast or mitochondria, and standard-

ized the number of sequences per sample to the smallest sequence

collection for that region. We measured the alpha diversity of the

stool sample using the observed richness and the inverse Simpson

diversity index based on the frequency of OTUs and genera in the

sequence collections. Within a region, the richness and diversity of

OTUs and genera were comparable among the BCM, BI, and

WUGSC samples and the richness and diversity were lower in the

JCVI samples (Table 4). Variation between regions was expected

because the number of sequences varied and the 16S rRNA gene

does not evolve uniformly along its length [33]. Finally, we

generated an NMDS plot to compare the samples using ThetaYC

distances (Fig. 6). There was considerably less variation between

samples using the same stool sample than there was with the mock

community sample; however the samples still clustered by

sequencing center and run. Although the difference in results

observed between the stool sample and the mock community

samples deserves further attention, we suspect this occurred

because the stool sample was dominated by fewer taxa than the

mock community and was thus not as affected by subtle differences

in the experimental setup (e.g. thermalcycler and pipette

calibration, pipettor error, reagent lot, primer concentration, etc.).

Analysis of human microbiome data
To understand how the magnitude of the inter-center variation

we observed with the control stool sample translated to other body

sites, we re-analyzed a dataset that characterized 15 or 18 body

sites from 12 men and 12 women, respectively. The study was

structured such that the DNAs were all extracted at BCM and the

DNAs were then sent to two of the four sequencing centers where

PCR and sequencing were performed. We re-analyzed the

sequence data using the shhh.flows-based pipeline and sub-

sampled sequences within each body site so that the same number

of sequences were used for each sample. We observed broad inter-

center variation at most body sites with most differences being less

than 0.20 (Fig. 7). For the stool samples, the interquartile range of

pairwise distances varied between 0.0143 and 0.0607 and between

0.0092 and 0.0394 for the V13 and V35 regions, respectively. In
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comparison, the interquartile range of distances between the 30

technical replicate sequencings of the control stool sample varied

between 0.0023 and 0.0174 and 0.0013 and 0.0098 for the V13

and V35 regions, respectively. In general, samples with lower

diversity also had lower inter-sample variation (e.g. Mid vagina vs.

Stool). Because of the small number of samples that were analyzed

by each pair of centers, it was not possible to assess whether there

were systematic center-based biases. Regardless, it is clear that

intra- and inter-center variation can have a significant impact on

the ability to detect subtle differences between treatments.

Discussion

A fundamental problem with the use of next generation

sequencing is that the technologies have been developed primarily

for resequencing, mapping, and genome assembly, which require

Figure 4. Differences in relative abundance of each sequence type in the raw unprocessed reads, following the Basic sequence
curation steps, and at the end of the two pipelines. Each bar represents the average relative abundance for 30 sequencing collections.
doi:10.1371/journal.pone.0027310.g004
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relatively low data quality compared to the single read analysis

required of 16S rRNA gene sequencing. In addition, further

sequencing of genomes will get an investigator closer to the truth,

whereas we have shown that additional sequencing for single read

analysis increases the number of artifacts and may exacerbate

biases via steps in the data generation protocol. Here we showed

that the presence of chimeric 16S rRNA gene sequences and

sequencing errors have a significant impact on the biodiversity

reflected in microbial ecology studies. To correct for these sources

of error we have proposed a number of solutions that can be

tailored to a particular analysis. We have successfully reduced the

sequencing error rate by 30-fold and the number of chimeric

sequences by 10-fold. The reduction in sequencing error rate is at

least an order of magnitude lower than those reported in previous

studies.

Although the number of replicate mock communities and

control samples analyzed in this study is beyond the capacity of

most laboratories, this analysis has demonstrated the value of

internal controls in microbial ecology studies. We have shown that

even when sequencing centers follow the same procedures there is

variation between and more importantly, within centers. The

inclusion of a mock community sample on each sequencing run

can be used to calculate the rate of chimerism, sequencing error

rate, and drift in the representation of a community structure.

Tailoring the richness and genetic diversity of a mock community

to the samples of interest (e.g. stool, skin, soil, water, etc.) would be

a useful resource for any laboratory performing microbial ecology

research. Similarly, re-sequencing a control sample on every

sequencing run is a useful datum to include if the control sample is

representative of the biodiversity and complexity of the other

samples being analyzed. We have shown that even when following

a proscribed and detailed protocol, intra- and inter-sequencing

center variation can be significant. It is likely that insidious

variation in thermalcycler calibration, reagent concentrations, and

other factors are the cause of this technical variation. That this

Table 3. The primer sequences used to amplify the three
regions of the 16S rRNA gene and their homology to the 16S
rRNA gene sequences represented in the mock community.

Primera
Organism (fraction
of operonsb) Sequencec

V13F Consensus (94/113) AGAGTTTGATCCTGGCTCAG

A. baumannii (5/5) ...........A........

B. vulgatus (1/7) .............A......

E. coli (7/7) ...........A........

P. aeruginosa (4/4) ...........A........

V13R Consensus (108/113) ATTACCGCGGCTGCTGG

P. acnes (3/3) ..C..............

V35F Consensus (111/113) CCTACGGGAGGCAGCAG

V35R Consensus (109/113) CCGTCAATTCMTTTRAGT

H. pylori (2/2) .....T............

V69F Consensus (93/113) ACGCGAAGAACCTTAC

B. vulgatus (7/7) ......G.........

H. pylori (2/2) ..A.............

P. acnes (3/3) .....T..........

R. sphaeroides (6/6) .....C..........

V69R Consensus (107/113) TACGGYTACCTTGTTAYGACTT

B. cereus (1/12) ....A.................

D. radiodurans (3/3) ....A.................

a‘‘F’’ corresponds to the forward PCR primer and ‘‘R’’ corresponds to the reverse
PCR primer.

bM. smithii (2 operons) had very low homology to all three primer pairs and is
not depicted here.

cAll primers are written in the 59 to 39 orientation. The complete primers were
synthesized to have a barcode and adapter primer at the 59 end of the reverse
primer and an adapter primer at the 59 end of the forward primer. Sequencing
was performed using the adapter downstream of the reverse primer.

doi:10.1371/journal.pone.0027310.t003

Figure 5. Non-metric multidimensional scaling (NMDS) plot
generated using ThetaYC distances between mock community
sequencing data after standardizing the number of sequences
per sample. Points with the same color and shape originated from the
same sequencing run.
doi:10.1371/journal.pone.0027310.g005
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variation was observed using DNAs that were processed by one

individual suggests that dividing the labor among many individuals

could be a source of additional technical variation. Technical

variation could hinder the ability to detect real differences and

perhaps more worrisome is the potential for batch effects that have

confounded genome-wide association studies (GWAS) [37]. In

fact, the full HMP cohort of 300 healthy individuals must contend

with many issues similar to those encountered in GWAS.

Population structure in the broader HMP study, including race

and ethnicity, was confounded with geographical location.

Geographical location, likewise, was confounded with clinical

sampling, as individuals were recruited uniformly in Houston at

BCM or in St. Louis at WUGSC. Finally, clinical sampling was in

turn confounded with sequencing center, as all of the St. Louis

samples were sequenced at WUGSC while the Houston samples

were divided among BCM, JCVI, and BI. These factors together

combine to produce at least five-fold more OTUs that exhibited

significant associations with the subject’s city of origin and the

sequencing center than with any other clinical variable (Personal

communication: HMP consortium). Incorporation of improved

experimental design and development of correction schemes will

be helpful as 16S rRNA gene sequencing surveys grow to

encompass large, structured populations. Furthermore, it is critical

that meta-analyses that hope to use this dataset as a reference take

into account these non-biological sources of variation.

Our study has primarily addressed the effects of artifacts

generated by PCR and sequencing; however, our analysis and that

of numerous others suggests that biases in the representation of the

16S rRNA gene pool may confound interpretation of these

microbial communities. Because a single aliquot of the mock

community was re-sequenced instead of multiple aliquots of the

same mock community it was not possible to directly measure the

magnitude of PCR-related biases relative to the ratios of the

different organisms in the mock community. Regardless, interpre-

tation of microbiome data in light of relative differences in

abundance and the use of complementary methods should reduce

the effects of such biases and lingering PCR and sequencing

artifacts. Although it may not be possible to ascertain specific

values for alpha and beta diversity measures, changes in the

observed parameter (e.g. richness or relative abundance) can be

used to indicate general changes in the community.

Any microbial community analysis is only as good as the

underlying biological question, study design, DNA extraction

method, PCR conditions, sequencing, and bioinformatic analysis.

Much of the recent debate over the scope of the ‘‘rare biosphere’’

has focused on the sequencing aspect of this pipeline without

considering the biases and artifacts introduced at the other steps.

In fact, all methods have their own strengths and limitations and

introduce unique biases. Next generation sequencing is but one of

many powerful tools at our disposal for relating changes in

microbial community structure with changes in health; however, it

is critical that we consider each step in the analysis and use

multiple methods to triangulate on our biological questions.

Materials and Methods

mother
All analyses described in the current study were performed

within version 1.22 of the mothur software package [38]. We

implemented the PyroNoise algorithm in mothur as the shhh.flows

command [24]. shhh.flows makes use of mothur’s accelerated

clustering algorithms, has a significantly improved user interface,

and because mothur runs on multiple platforms, it is no longer

constrained to Unix-based operating systems. Our implementation

of ChimeraSlayer within mothur as chimera.slayer provides for

faster execution, parallelization, the ability to use any reference

alignment, and an improved interface [21]. We also modified

chimera.slayer to identify chimeras without the use of a stand-

alone reference database by treating the more abundant sequences

in a dataset as the reference. Within mothur, we created a wrapper

for the original Uchime source code, which was implemented as

chimera.uchime. Finally, we re-implemented the PerseusD code in

mothur as chimera.perseus [32]. The only difference between our

implementation and the original was to use a star alignment

instead of MAFFT to align the query sequence to its two putative

parents. The concordance between what the two implementations

identified as chimeric was generally above 99%. shhh.flows,

shhh.seqs, the Bayesian classifier, and chimera.slayer were C++
translations of the original C, Java, and Perl programming code

and generated identical output of the original software when

benchmarked using test datasets provided by the original

developers. Those interested in following the pipelines described

Table 4. The richness and diversity of OTUs and genera identified in the control stool sample sequence collections for each region
and sequencing center.

Region
Number of sequences
per sample Center

Observed Richness
(OTU; sd)

Inverse Simpson
(OTU; sd)

Observed Richness
(Genera; sd)

Inverse Simpson
(Genera; sd)

V13 9,577 BCM 33.1 (4.1) 2.13 (0.08) 19.3 (2.6) 1.22 (0.01)

BI 30.7 (1.5) 2.09 (0.02) 18.3 (0.6) 1.20 (0.01)

JCVI 25.0 (2.8) 1.82 (0.04) 14.0 (2.5) 1.16 (0.01)

WUGSC 37.2 (8.3) 2.30 (0.21) 19.5 (2.7) 1.48 (0.04)

V35 2,741 BCM 21.3 (2.7) 2.08 (0.04) 16.3 (2.3) 1.21 (0.02)

BI 20.7 (1.5) 2.13 (0.02) 19.7 (1.5) 1.22 (0.01)

JCVI 18.3 (2.3) 1.94 (0.04) 13.2 (1.7) 1.13 (0.03)

WUGSC 25.2 (4.1) 2.35 (0.15) 16.8 (3.4) 1.39 (0.07)

V69 4,294 BCM 43.9 (4.4) 3.88 (0.43) 23.7 (3.3) 1.94 (0.24)

BI 39.0 (1.0) 4.14 (0.50) 24.0 (2.6) 2.08 (0.07)

JCVI 40.0 (2.3) 3.64 (0.25) 19.2 (3.1) 1.88 (0.19)

WUGSC 37.3 (5.2) 2.82 (0.25) 18.8 (2.8) 1.59 (0.11)

doi:10.1371/journal.pone.0027310.t004
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in this study can follow the tutorial on the mothur website (http://

www.mothur.org/wiki/Schloss_SOP).

Identification of chimeras and sequencing errors
All reference and de novo sequences were aligned to a 50,000-

column wide SILVA-based reference alignment using mothur’s

NAST-based aligner [39,40]. We identified chimeras in the mock

community data by calculating the number of mismatches

between each sequence and all possible two-parent chimeras that

could be generated by the reference sequences. If a sequence was

at least three bases more similar to a chimera of reference

sequences than to a single reference sequence, then it was

considered chimeric [24]. Sequences that met this criterion were

excluded from the calculation of error rates. The error rate of non-

chimeric sequences was calculated by calculating the distance

between the query sequence and each reference sequence. The

reference sequence with the shortest distance to the query was

considered the true reference sequence.

Mock community
A single aliquot of the mock community was used throughout the

sequencing effort analyzed in this study. This mock community

represented 21 strains distributed among members of the Bacteria

(n = 20) and Archaea (n = 1). Among the 20 bacterial sequences,

there were 6 phyla, 10 classes, 12 orders, and 18 families and genera.

The aliquot of mock community DNA was prepared by mixing

genomic DNA from Acinetobacter baumanii (NC_009085), Actinomyces

odontolyticus (DS264586), Bacillus cereus (AE017194), Bacteroides vulgatus

(NC_009614), Clostridium beijerinckii (NC_009617), Deinococcus radio-

durans (NC_001263), Enterococcus faecalis (NC_004668), Escherichia coli

(NC_000913), Helicobacter pylori (NC_000915), Lactobacillus gasseri

(NC_008530), Listeria monocytogenes (NC_003210), Neisseria meningitidis

(NC_003112), Propionibacterium acnes (NC_006085), Pseudomonas

aeruginosa (NC_002516), Rhodobacter sphaeroides (NC_007493,

NC_007494), Staphylococcus aureus (NC_007793), Staphylococcus epider-

midis (NC_004461), Streptococcus agalactiae (NC_004116), Streptococcus

mutans (NC_004350), Streptococcus pneumoniae (NC_003028), and

Methanobrevibacter smithii (NC_009515). Given the low homology

between the three PCR primer pairs and the M. smithii 16S rRNA

gene sequence, these sequences were rarely observed and have been

omitted from the analysis of this study. The proportions of genomic

DNAs added were calculated to have an equal number of 16S rRNA

Figure 7. Pairwise ThetaYC distances between different DNA
samples that were PCR amplified and sequenced at two
different sequencing centers using the V13 region. The uneven
distribution of points across body sites is due to the inability of the
sequencing centers to generate more than 2,000 sequence reads for
that sample.
doi:10.1371/journal.pone.0027310.g007

Figure 6. NMDS plot generated using ThetaYC distances
between sequencing replicates of the same stool sample after
standardizing the number of sequences per sample. Points with
the same color and shape originated from the same sequencing run.
doi:10.1371/journal.pone.0027310.g006
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genes represented for each species; however, the original investiga-

tors did not verify the final relative abundances.

DNA sequence data
All of the DNA sequences that were included in this study were

obtained by following a common SOP (http://www.hmpdacc.

org/doc/HMP_MDG_454_16S_Protocol_V4_2_102109.pdf). Of

particular note is that the sequencing was performed by

sequencing from the reverse PCR primer towards the forward

primer. All sequence data is available through the HMP Data

Analysis and Coordination Center (DACC; http://www.

hmpdacc.org/HMMC) and the NCBI Short Read Archive

(http://www.ncbi.nlm.nih.gov/sra).

a and b Diversity measurements
All calculations were performed using mothur. a diversity was

measured by counting the number of observed OTUs (i.e.

observed richness) and using the reciprocal of the Simpson Index

as described by Magurran [41]:

1

DSimpson

~
N N{1ð Þ

XSobs

i~1
ni ni{1ð Þ

Where N is the total number of sequences sampled from the

community, ni is the number of sequences in the ith OTU, and Sobs

is the total number of OTUs. The reciprocal Simpson Index was

selected because it represents the number of uniformly distributed

OTUs that were required to have the same diversity as the actual

community; thus giving it an easier biological interpretation

compared to other indices (e.g. Shannon Index). b diversity was

measured by using the hYC distance of Yue and Clayton [42]:

HYC~1{

XST

i~1
aibi

XST

i~1
ai{bið Þ2z

XST

i~1
aibi

Where ai and bi are the relative abundances of the ith OTU in

communities A and B and ST is the total number of OTUs

observed in both communities. hYC measures differences in

community structure and was selected because it weighs rare

and abundant OTUs more evenly than other metrics such as

Bray-Curtis or Morisita-Horn.
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