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Introduction

There has been recent interest in understanding how micro-
bial community structures relate to the health of symbiotic, 
natural and engineered ecosystems.1-3 The dysbiosis hypoth-
esis suggests that changes in human health are due to altera-
tions in the structure of the microbial communities residing 
in that environment.4 The recent observation that enterotypes 
or community structures types that are independent of ethnic-
ity, sex, and nationality, but are rather structured by an indi-
vidual’s long-term diet emphasizes the point that changes in 
community structure do not necessarily have a negative impact 
on health or community productivity.5,6 Differences in com-
munity structure that do not result in a change in ecosystem 
health have been observed in non-host-associated environments 
as well.7 Taken together, a model emerges of a landscape where 
there are multiple community structure states where a commu-
nity can reside. We hypothesize that these states vary in their 
resistance to perturbations, sensitivity to challenge by an exog-
enous population, and ability to fill the environment’s niche 
space. Ultimately, whether a state is “healthy” depends on all of 

Ecologists hypothesize that community structure and stability affect productivity, sensitivity to invasion and extinction, 
and resilience and resistance to perturbations. Viewed in the context of the gut microbiome, the stability of the gut 
community is important for understanding the effects of antibiotics, diet change and other perturbations on host health 
and colonization resistance. Here we describe the dynamics of a self-contained community, the murine gut microbiome. 
Using 16S rRNA gene sequencing of fecal samples collected daily from individual mice, we characterized the community 
membership and structure to determine whether there were significant changes in the gut community during the first 
year of life. Based on analysis of molecular variance, we observed two community states. The first was observed in the 10 
days following weaning and the second was observed by 15 days following weaning. Interestingly, these two states had 
the same bacterial populations, but those populations had different relative abundances in the two states. By calculating 
the root mean squared distances between samples collected in the early and late states for each mouse, we observed that 
the late state was more stable than the early state. This increase in stability was not correlated with increased taxonomic 
richness, taxonomic diversity, or phylogenetic diversity. In the absence of an experimentally induced perturbation, the 
second community state was relatively constant through 364 days post weaning. These results suggest a high degree of 
stability in the microbiome once the community reached the second state.
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these factors as well as the response of the specific environment 
to that state.

The mechanisms that drive change between these states are 
poorly understood. In host-associated communities, mechanisms 
that are likely to affect the structure of the microbiome include 
host genetics, alterations in the host immune system, ingestion 
of antimicrobials and diet.4 Differences in community stability 
are often associated with higher rates of extinction and coloniza-
tion and these events can shift the overall community structure 
between healthy and unhealthy states.8 Understanding the sta-
bility of those states and how variation in stability affects varia-
tion in health can only be accomplished by characterizing the 
temporal dynamics of microbial communities. The importance 
of diversity and stability is a complex and contentious issue that 
has yet to be settled for plant, animal, or microbial communi-
ties.8 The lack of a clear correlation between diversity and stabil-
ity emphasizes the need to develop a mechanistic understanding 
of the forces that stabilize microbial communities.

Recent studies have characterized the normal gut micro-
biota at multiple time points from the same person over long 
periods of time. Koenig and colleagues sampled an infant over  
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fresh feces were collected from each animal daily; this continued 
for the rest of the experiment. Immediately after weaning, all 
animals experienced rapid weight gain until approximately 25 d 
post weaning (dpw) when their growth rate slowed but continued 
to increase for the remainder of the experiment (Fig. 1). During 
the 150 dpw, the weight of the average female increased by  
1.7-fold and the average male increased 2.3-fold. Among the three 
animals that were sampled until 364 dpw, the female gained an 
additional 20% and the two males gained 23%. Among the mice 
in the second litter, the median ratio of pairwise differences in 
weight between co-housed and single-housed animals was 0.86 
for the females and 1.00 for the males. Co-housed males gained 
1.9 g more than their single-housed littermates; however the co-
housed females gained 1.9 g less than their single-housed litter-
mates. Although co-housed mice from the first litter gained more 
weight and had a greater difference in weight than the co-housed 
mice from the second litter, Spearman correlation coefficients 
between weights of animals from the same litter were within the 
range of coefficients calculated between animals of different lit-
ters. Taken together, these results indicate that after controlling 
for age, genetics, diet, environment, sex, litter, and housing there 
was still a significant amount of variation in the weights of the 
mice from these litters.

To determine whether there was a change in the gut micro-
biome in the immature and mature animals, we used 454 FLX 
Titanium to sequence the V35 region of the bacterial 16S rRNA 
gene. We focused our microbial community analysis on the 
feces sampled at 0–9 dpw (“early”) and 141–150 dpw (“late”). 
Sequences were assigned to operational taxonomic units (OTUs) 
where the average distance between sequences was not greater 
than 0.03 and used to recreate their phylogeny. There were no 
statistically significant effects of sampling period (early vs. late) 
or sex on α diversity measures including the observed commu-
nity richness (Sobs = 98.3 OTUs), inverse Simpson diversity index  
(1/D = 16.4 OTUs), Shannon diversity index (H′ = 3.26), and 
the phylogenetic diversity (PD = 5.54). We characterized the 
structure of the microbiome by calculating the pairwise distance 
between community structures using θYC (Fig. 2). Non-metric 
dimensional scaling plots demonstrated that the community 
structures of all 12 mice could be partitioned between the early 
and late time periods (AMOVA; all p < 10-4) and that there was 
not a significant effect of litter, single vs. co-housing, or sex on 
community structure. Similar results were observed when we 
used the weighted or unweighted UniFrac metrics (data not 
shown).

Observing that the overall community had a significantly 
different structure during the late period compared with the 
early period, we attempted to identify the bacterial populations 
responsible for the shift. At the phylum level, there were no sig-
nificant differences between the early and late periods (p > 0.05). 
Among the early and late samples, 70.54% of the sequences affili-
ated with members of the Bacteroidetes and 29.21% affiliated 
with the Firmicutes. Minor members of the community affili-
ated with the Actinobacteria (0.09%), Proteobacteria (0.02%), 
Tenericutes (0.10%), TM7 (0.02%), and the Verrucomicrobia 
(0.02%). To obtain a higher resolution characterization of the 

2.5 y and observed non-random successional patterns includ-
ing an increase in phylogenetic diversity over the duration of 
the study.9 Caporaso and colleagues tracked the microbiota of 
two adults at four body sites for up to 15 mo and observed that 
few species were found at all time points, but many were found 
to be transient across the time courses.10 This suggests that the 
gut communities may be sampling species from a broader meta-
community in a stochastic manner. Studies employing intensive 
sampling designs such as these indicate that the gut microbial 
community is more dynamic than suggested by studies that sam-
ple at two to four time points.1,11 These studies of the dynamics of 
“typical” microbiomes serve as a useful contrast to several studies 
that have used designs where the individual served as their own 
control to investigate the effects of diet change, antibiotic treat-
ments, and the stability of enterotypes.6,12,13

While there is growing interest in performing intensive lon-
gitudinal sampling of humans, there has been less of a focus on 
studying the long-term dynamics of the microbial communities 
associated with experimentally tractable model animals.14 Most 
longitudinal studies either use a pre- and post-treatment sam-
pling scheme or euthanize cohorts of animals at different time 
points to reconstruct a time course.15-18 This creates difficulties in 
interpreting the results of studies investigating models of patho-
genesis where it is not possible to differentiate between the initial 
microbiome of those animals that succumb to disease and those 
that do not. Furthermore, with only pre- and post-treatment time 
points, it is not possible to ascertain whether the post-treatment 
sample represented a stable condition or whether the community 
was still experiencing perturbations imposed by the treatment.18 
As an experimental system to study ecology, host-associated 
communities are advantageous because it is possible to sample 
them without perturbing the community and to make controlled 
manipulations of the host’s diet, environment, genetics, and ini-
tial microbiota. For example, several studies have used human-
ized and gnotobiotic mouse models to demonstrate a clear effect 
of diet changes on the structure of the murine microbiome.14,19,20

In this study, we investigated the dynamics of the gut microbi-
ota obtained from 12 conventionally raised and colonized inbred 
mice living in a specific-pathogen free environment. We sought 
to test the hypothesis that the gut microbiome would be different 
in an immature mouse than in an adult. Our results supported 
this hypothesis and also demonstrated that as the animal matures 
their gut community became more stable.

Results

We obtained two litters of C57BL/6 inbred mice from a breeding 
colony at the University of Michigan. The first litter included 2 
males and 2 females and the second litter included 4 males and 4 
females. The two litters were born to different mothers 8 d apart. 
At 21 d after birth the mice from the first litter were weaned 
and separated by sex into two cages so that the 2 males and 2 
females were each co-housed. In the second litter, 2 males and 2 
females were also separated by sex into two cages. The remaining 
4 mice from the second litter were also weaned and placed into 
four separate cages at 21 d after birth. At weaning weights and 
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the same, it was changes in the relative abundance of these pop-
ulations that explained the observed differences in community 
structure.

To measure the difference in stability among the early and late 
communities, we measured the community-level variation within 
each period for each animal by calculating the mean squared dis-
tance between all points within a period for each animal. Across 
the 12 animals the mean squared distances for each animal 
decreased by between 1.5 and 7.6-fold (p = 0.0001). To investi-
gate this reduced variation further, we measured the association 
between varying sized time intervals for each mouse in the early 
and late periods (Fig. 3). The late samples had a lower level of vari-
ation between time points within the same animal and between 
different animals compared with the early samples. In addition, 
we observed that as the time interval between samples increased, 
the dissimilarity between samples increased for the early time 
points, while it remained constant for the late time points. These 
data suggest that the intra-animal variation was random within 

community, we identified those 
OTUs that had an average rela-
tive abundance greater than 0.5% 
across all samples (i.e., minimum 
average of 9.5 sequences observed 
per sample; n = 32 OTUs). We 
used a repeated measures paired 
group analysis of variance to iden-
tify those OTUs that were differen-
tially represented between the early 
and late periods. We identified 11 
OTUs whose relative abundance 
increased and 16 whose relative 
abundance decreased between the 
early and late periods (Table 1). 
Interestingly, some closely related 
OTUs had different profiles in their 
relative abundance during the early 
and late periods. For example, two 
members of the genus Lactobacillus 
(OTUs 12 and 23) decreased in 
abundance and one (OTU 9) 
increased in abundance. Similar 
results were observed for members 
of the family Porphyromonadaceae, 
which showed significant decreases 
(OTUs 5, 7 and 8) and increases 
(OTUs 6 and 13) in relative abun-
dance between the early and late 
periods; three OTUs affiliated 
with the Porphyromonadaceae did 
not exhibit a significant difference 
in relative abundance between the 
early and late periods (OTUs 1, 4 
and 14).

Considering the clear shift in 
community structure between the 
early and late periods, we were curi-
ous whether the bacterial populations we observed early were the 
same as those found late or whether they were the same popula-
tions but in different abundance. Traditional metrics of mem-
bership (e.g., Jaccard β-diversity distance) are adversely affected 
by under sampling because rare populations are unevenly repre-
sented. To circumvent this difficulty, we assumed that the ten 
days within each period represented the core-microbiome for 
the entire period and for that mouse and calculated the frac-
tion of sequences from the early and late periods that affiliated 
with a shared OTU for each mouse. Across the 12 mice, between 
94.1 and 98.5% of the sequences from the early or late periods 
belonged to OTUs that were found in both periods and there 
was not a significant difference between the early and late periods 
(paired T-test; p = 0.67). When we looked for OTUs with an 
average relative abundance greater than 0.2% that were unique 
to either periods, we were unable to detect any that were unique 
to a period across all of the animals. These results suggest that 
although the membership of the early and late periods was largely 

Figure 1. Weights of mice over the first 364 d post weaning (dpw). For each litter two male mice were co-
housed and two female mice were co-housed. In addition, two males and two females from the second 
litter were each individually housed. The vertical bars along the bottom indicate samples that were used 
for the microbiome analysis described in the current study.
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Figure 2. For figure legend, see opposite page.
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Checkerboard and V-ratio, all p > 0.05). We calculated the coef-
ficient of variation (i.e., the ratio of the standard deviation to the 
mean relative abundance) within a period for each OTU and ani-
mal to identify those OTUs that exhibited differential stability 

the early and late time periods. Further support for random tem-
poral variation within a period was provided by non-significant 
co-occurence statistics, which indicated that the microbial popu-
lations were not associating in a preferential manner (C-score, 

Figure 2 (See opposite page). Temporal variation of the community structure of the murine gut microbiome for all 12 mice together as well as those 
from two female and one male animal over the first 364 dpw as represented in NMDS plots using the θYC distance metric. The stress for this represen-
tation was 0.15. Samples collected between 0 and 9 dpw are in blue, those from 11 to 140 dpw are in green, those from 141–150 dpw are in red, and 
samples from 364 dpw are in black. Larger characters are closer in the unrepresented axis and smaller characters are further into the unrepresented 
axis. Animated versions of the NMDS plots for each animal and all points together are available as supplementary data.

Table 1. The difference in average relative abundance of OTUs between the early and late periods

OTU Taxonomy (level) Early (%) Late (%) p value

19 Clostridiales (order) -9.95 1.52 0.00 5.4E-16*

37 Clostridiales (order) -2.40 1.25 0.24 3.3E-11*

28 Firmicutes (phylum) -2.36 0.84 0.16 5.2E-11*

44 Clostridiales (order) -2.09 0.83 0.20 5.5E-11*

25 Clostridiales (order) -1.79 1.43 0.41 9.7E-17*

18 Clostridiales (order) -1.66 1.62 0.51 4.4E-16*

23 Lactobacillus (genus) -1.34 1.03 0.41 1.7E-05*

12 Lactobacillus (genus) -1.31 1.96 0.79 2.0E-10*

30 Clostridiales (order) -1.22 1.81 0.78 2.6E-09*

24 Clostridiales (order) -1.11 0.86 0.40 2.5E-04*

5 Porphyromonadaceae (family) -1.08 6.44 3.03 4.1E-24*

29 Oscillibacter (genus) -0.84 1.18 0.66 8.5E-07*

26 Ruminococcaceae (family) -0.66 0.91 0.57 2.3E-05*

2 Bacteroides (genus) -0.64 10.54 6.77 3.6E-08*

3 Alistipes (genus) -0.49 7.89 5.61 1.5E-04*

35 Clostridiales (order) -0.30 0.84 0.68 1.1E-02*

7 Porphyromonadaceae (family) -0.18 4.02 3.55 1.2E-02*

8 Porphyromonadaceae (family) -0.15 3.57 3.22 3.8E-02*

1 Porphyromonadaceae (family) -0.07 11.84 11.24 2.80E-01

22 Blautia (genus) -0.05 1.60 1.54 7.90E-01

4 Porphyromonadaceae (family) -0.03 8.53 8.35 5.50E-01

14 Porphyromonadaceae (family) 0.03 2.23 2.28 6.40E-01

16 Bacteroidetes (phylum) 0.15 0.82 0.92 4.50E-02

21 Clostridiales (order) 0.53 0.97 1.40 5.2E-05*

6 Porphyromonadaceae (family) 0.86 4.41 8.00 3.3E-42*

9 Lactobacillus (genus) 1.19 1.54 3.52 8.9E-06*

17 Clostridiales (order) 1.19 0.37 0.85 4.4E-07*

11 Bacteroidales (order) 1.50 1.12 3.15 6.0E-55*

15 Barnesiella (genus) 1.56 2.57 7.57 8.1E-51*

13 Porphyromonadaceae (family) 2.12 0.71 3.09 7.7E-53*

10 Bacteroidales (order) 2.21 1.17 5.41 1.3E-76*

27 Bacteroidales (order) 3.59 0.14 1.74 1.5E-46*

20 Turicibacter (genus) 3.69 0.10 1.26 1.5E-24*

Shaded cells represent OTUs that were classified as belonging to the Firmicutes and the non-shaded cells represent those belonging to the Bacteroide-
tes. Significance was assessed by using a repeated measure paired treatment analysis of variance for each OTU and correcting for multiple comparisons 
using an experiment-wise error rate of 0.05.34
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late samples indicating that the late community structure exhib-
ited constancy over long periods of time (Figs. 2 and 4).

Prior to weaning the mice consumed solid chow and milk 
from their mother, which contained nutrients and high levels 
of IgA. We reasoned that although the behavioral and dietary 
effects of weaning would affect the microbiome, the dynamics of 
IgA in the weaned animals could explain a portion of the changes 
we observed in the microbiome. We quantified the amount of 
secretory IgA (sIgA) as a fraction of total protein using the 
same feces that were characterized by 16S rRNA gene sequenc-
ing. Interestingly, the sIgA levels increased an average of 25-fold 
between the early and late periods and were elevated by 6–11 
dpw (Fig. 5). Although there was only a qualitative association 
between shifts in the community structure and sIgA levels, it 
appeared that the shift in sIgA preceded the shift in the commu-
nity structure providing evidence to support the hypothesis that 
maturation of the immune system affected the observed changes 
in the microbiome.

Discussion

The murine gut microbiome exists in two states in the 20 d after 
weaning. In addition, the second state exhibits greater stability 

between the two periods (Table 2). Six OTUs had a greater than 
2-fold reduction in their coefficient of variation including three 
members of the order Bacteroidales (OTUs 10, 11 and 27), one 
member of the genus Turicibacter (OTU 20), one member of 
the genus Barnesiella (OTU 15), and one member of the family 
Porphyromonadaceae (OTU 13); these were also the 6 OTUs 
that had the most dramatic increases in relative abundance (Table 
1). None of the OTUs had a significant increase in its coefficient 
of variation between the early and late periods.

We performed additional sequencing using samples collected 
between 11 and 25 dpw and at 45, 65, and 125 dpw to better 
define the shift between the early and late periods. We calculated 
the root mean squared θYC distance (RMSD) between all of the 
samples for each animal to their early and late points for each 
mouse to determine when the community structure changed. 
The difference between the RMSD for each sample to the early 
and late time points indicated the affiliation of each sample to the 
early or late period. These data indicate that the communities all 
shifted to the late community structure by 11 to 17 dpw (Fig. 4). 
We also obtained sequence data at 364 dpw for three of the mice 
to quantify the long-term stability I the community. The commu-
nity structures observed at 364 dpw clearly clustered among the 

Figure 3. Average θYC distances between days for the same animal (self-comparison) and between different animals (other-comparison) for 0 to 9 dpw 
(blue) and 141 and 151 (red) dpw. Error bars represent the 95% confidence interval.
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our control for the microbial inoculum (i.e., the mothers), diet, 
genetics, environment, sex, and age. Such variation and lack of 
clear successional patterns within a state suggest that in addition 
to ecological and immunological mechanisms, stochastic factors 
have a significant role in shaping the structure of the microbial 
communities within each state.

There also appears to be intra-genus specialization within the 
murine gut microbiome. As indicated in Tables 1 and 2, there 
were OTUs that affiliated with the same taxonomic lineage that 
behaved differently in the early and late periods. This result 

than that observed immediately after weaning and the increased 
stability was not associated with a significant change in diver-
sity. At least two possible explanations can account for this result. 
First, ecological mechanisms (e.g., competition) could alter the 
structure of the microbiome after the change in nutrients expe-
rienced at weaning. Second, as the immune system of the ani-
mal matures, for example with the replacement of maternal IgA 
with endogenous IgA, this could also provide a mechanism that 
drives change in microbiome structure. In addition, it is surpris-
ing that intra- and inter-animal variation was quite large given 

Table 2. The difference between the coefficient of variation for the early and late periods for each OTU

OTU Taxonomy (level) Early Late p value

27 Bacteroidales (order) -2.48 3.416 0.612 3.6E-07*

10 Bacteroidales (order) -2.46 1.246 0.226 1.1E-04*

11 Bacteroidales (order) -1.63 0.753 0.243 6.3E-05*

20 Turicibacter (genus) -1.59 2.632 0.877 6.6E-06*

15 Barnesiella (genus) -1.23 0.737 0.315 9.5E-05*

13 Porphyromonadaceae (family) -1.18 0.956 0.421 1.2E-04*

1 Porphyromonadaceae (family) -0.98 0.517 0.263 8.3E-05*

6 Porphyromonadaceae (family) -0.93 0.519 0.273 1.1E-05*

2 Bacteroides (genus) -0.79 0.700 0.405 4.5E-03*

28 Firmicutes (phylum) -0.77 1.335 0.781 6.3E-02

16 Bacteroidetes (phylum) -0.76 0.539 0.319 6.7E-05*

4 Porphyromonadaceae (family) -0.68 0.397 0.247 9.9E-05*

30 Clostridiales (order) -0.61 1.055 0.689 2.5E-03*

17 Clostridiales (order) -0.60 1.716 1.136 1.6E-02*

24 Clostridiales (order) -0.51 1.716 1.209 1.6E-02*

35 Clostridiales (order) -0.49 0.772 0.549 2.0E-04*

7 Porphyromonadaceae (family) -0.49 0.536 0.382 1.6E-04*

14 Porphyromonadaceae (family) -0.47 0.555 0.401 1.4E-05*

8 Porphyromonadaceae (family) -0.42 0.553 0.415 1.2E-04*

22 Blautia (genus) -0.36 1.156 0.898 1.1E-02*

23 Lactobacillus (genus) -0.31 1.487 1.197 1.0E-01

9 Lactobacillus (genus) -0.31 1.575 1.269 4.4E-04*

3 Alistipes (genus) -0.28 0.849 0.697 2.1E-01

37 Clostridiales (order) -0.27 1.350 1.116 1.0E-01

18 Clostridiales (order) -0.23 0.891 0.758 2.1E-02*

21 Clostridiales (order) -0.22 0.798 0.687 4.3E-02

26 Ruminococcaceae (family) -0.21 0.895 0.773 3.1E-01

44 Clostridiales (order) -0.08 1.324 1.249 4.7E-01

12 Lactobacillus (genus) 0.02 0.972 0.985 7.1E-01

29 Oscillibacter (genus) 0.14 0.946 1.042 8.9E-01

25 Clostridiales (order) 0.17 0.915 1.030 6.9E-01

5 Porphyromonadaceae (family) 0.36 0.505 0.647 2.9E-01

19 Clostridiales (order) 1.67 1.447 4.606 NA

Shaded cells represent OTUs that were classified as belonging to the Firmicutes and the non-shaded cells represent those belonging to the Bacteroide-
tes. Significance was assessed by using a paired t-test for each OTU and correcting for multiple comparisons using an experiment-wise error rate of 
0.05.34NA, because OTU19 was only observed in one animal among the late time points, it was not possible to perform the test. The numbers presented 
are for M005.
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of the mechanisms of colonization resistance to pathogens and 
probiotics.

Materials and Methods

Animals and animal care. Two litters of C57BL/6 inbred mice  
(n = 4 and 8) were used in this study. The litters were obtained from 
a breeding colony established at the University of Michigan in 
1991 using founder parents obtained from Jackson Laboratories. 
All mice were weaned at 21 d after birth and observations for 0 d 
post weaning were collected as the animal was transferred to its 
new cage. We obtained fresh fecal pellets as they were excreted 
and animal weights daily for each animal. All fecal pellets were 
stored at -80°C. Mice were housed in cages with autoclaved 
food, corncob bedding, and water. Cage changes occurred every 
14 d and were performed in a laminar flow hood. All animal 
protocols used during this study were reviewed an approved by 

suggests that those populations interact differently with other 
members of the community or the host. Furthermore, it under-
scores the value of the OTU-based approach, which can provide 
greater taxonomic resolution than classification-based methods. 
A purely classification-based method would have lumped numer-
ous OTUs into the same taxonomic grouping and effectively 
muted much of the signal that allowed us to explain the differ-
ences between the early and late periods. Further metagenomic-
based analysis is needed to correlate intra-genus taxonomic 
variation with intra-genus functional variation.

Our study raises the interesting question of whether different 
community states are inherently more or less stable than others. 
By modulating the membership and structure of the microbiome, 
it is possible that the mice could experience different commu-
nity states and allow us to probe diversity-stability relationships. 
Improved understanding of the community-based and host-
based mechanism of stability will improve our understanding 

Figure 4. Relative difference in root mean squared θYC distances to the early (0–9 dpw) and late (141–150 dpw) samples for each animal. Rectangles 
with “NC” indicate that the samples were not characterized and those with “ND” indicate those samples that had fewer than 1,900 sequences.
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workstation. The V35 region was amplified and sequenced in the 
reverse direction as described elsewhere (http://www.hmpdacc.
org/doc/HMP_MDG_454_16S_Protocol_V4_2_102109.pdf). 
Barcoded PCR primers allowed us to sequence 96 samples in 
parallel. We utilized 653 barcodes on seven half-picotiter plate 
454 Titanium sequencing runs; the other half of the plate did 
not contain 16S rRNA gene fragments to avoid contamination 
between regions. We attempted to amplify and sequence the 16S 
rRNA gene from 29 or 30 fecal samples from each of the 12 mice 
(Fig. 3). All of the early and late time point samples for an animal 
were processed on the same sequencing run. This allowed us to 
limit the risks of batch effects that could cause us to observe dif-
ferences between periods due solely to when the sequencing was 
performed. We also re-sequenced a mock community consisting 

the University Committee on Use and Care of Animals at the 
University of Michigan.

Measurement of sIgA and total protein. We measured the 
concentration sIgA concentration using a mouse IgA ELISA 
quantitation kit with a standard curve (Bethyl). The total protein 
concentration was quantified using a protein quantification kit 
(BioRad) with a standard curve. sIgA levels were converted to 
a percentage of total protein and presented as a fraction of the 
maximum percent sIgA for each animal.

DNA extraction, amplification and sequencing. The 
remaining aliquot of suspended feces was used to extract and 
sequence 16S rRNA gene sequences from the microbial com-
munities. Microbial genomic DNAs were extracted using the 
Roche MagNA Pure nucleic isolation kit on the MagNA Pure 

Figure 5. Relative percentage of secretory IgA as total protein in the feces of each animal over the first 150 dpw. Rectangles with “NC” indicate that the 
samples were not characterized and the sample with “ND” did not yield useable data.
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due to PCR and sequencing errors and biases, we calculated the 
Yue and Clayton (θYC) distance between the 276 of the fecal 
samples that were sequenced 2 to 4 times. The median θYC dis-
tance between replicate samples was 0.049 (mean = 0.059; sd = 
0.036; IQR = 0.036–0.073). Data from these technical replicates 
were averaged in subsequent analysis following sub-sampling  
or rarefaction.

All sequences were classified using a Bayesian kmer-based 
approach with an 80% confidence threshold using the RDP train-
ing set version 6 (http://sourceforge.net/projects/rdp-classifier).28 
Using an expanded training based on the greengenes reference 
taxonomy did not improve the classification of the sequences.29 A 
classification for each OTU was obtained by determining which 
taxonomy had the majority consensus of sequences within the 
OTU.30 To calculate phylogenetic diversity and UniFrac statis-
tics, we constructed neighbor joining phylogenetic trees using 
the non-heuristic algorithm implemented in clearcut.31 Beta-
diversity using OTU-based data was calculated using the θYC dis-
tance metric because it provides an even weighting of abundant 
and rare OTUs.32 Co-occurrence statistics and significance val-
ues were calculated as described by Gotelli33 for sample list-based 
data. The sff binary files, primers, barcodes, and a spreadsheet 
of MIMARKS compliant metadata are available at http://www.
mothur.org/transition.
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of 21 pooled genomic DNA samples on three of the sequencing 
runs to assess the overall PCR and sequencing error rate.21

We successfully obtained sequence data from 643 of the 
barcodes; one of the missing barcodes represented the only 
sequencing data for that sample and the other missing barcodes 
were technical replicates. After curating the sequence data, we 
obtained between 1 and 22,116 sequences (median = 4,300; 
IQR = 3,380–5,243) with a median length of 247 bp from the 
remaining barcoded samples. Uneven sampling would result in 
the inclusion of disproportionate numbers of spurious sequences 
and would have a biased effect on a number of our community 
metrics. Therefore, depending on the type of analysis, we either 
rarefied our data to 1,900 sequences or randomly selected 1,900 
sequences from each sample. This depth was selected because 
it allowed us to maintain deep sequencing coverage. Although 
31 barcoded samples had fewer than 1,900 sequences and were 
removed from further analysis, most of these barcodes were tech-
nical replicates and only caused us to exclude four additional 
fecal samples from the rest of the analysis. Our microbial com-
munity analysis was based on 354 fecal samples.

Sequence curation and analysis pipeline. The sequence 
analysis pipeline implemented here largely follows our previ-
ously reported methods as implemented in the mothur soft-
ware package.21,22 Specifically, we used a flowgram denoising 
algorithm,23 alignment to the SILVA reference alignment using 
a NAST-based algorithm,24-26 filtering of sequences positions 
to insure that the sequences overlapped in the same alignment 
space, and pre-clustering to allow up to a 2-bp difference between 
sequences.21 Sequences that were flagged as potential chimeras 
using UCHIME27 or that were classified as Chloroplasts were 
culled from the sequence collection. Sequences were assigned 
to OTUs based on a 3% difference cutoff using average neigh-
bor algorithm. After processing the mock community sequence 
data in parallel with the sequences from the fecal samples, we 
observed an average sequencing error rate of 0.0001 and an aver-
age residual chimera rate of 2.0% (n = 2,327–5,870 sequences). 
When the mock community data were rarefied to 1,900 
sequences, we observed between 20.6, 22.0, and 23.7 OTUs; 
18 OTUs were expected. To measure the technical variation 
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