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ABSTRACT
Background. 16S rRNA gene sequences are routinely assigned to operational
taxonomic units (OTUs) that are then used to analyze complex microbial
communities. A number of methods have been employed to carry out the assignment
of 16S rRNA gene sequences to OTUs leading to confusion over which method is
optimal. A recent study suggested that a clustering method should be selected based
on its ability to generate stable OTU assignments that do not change as additional
sequences are added to the dataset. In contrast, we contend that the quality of the
OTU assignments, the ability of the method to properly represent the distances
between the sequences, is more important.
Methods. Our analysis implemented six de novo clustering algorithms including the
single linkage, complete linkage, average linkage, abundance-based greedy clustering,
distance-based greedy clustering, and Swarm and the open and closed-reference
methods. Using two previously published datasets we used the Matthew’s Correlation
Coefficient (MCC) to assess the stability and quality of OTU assignments.
Results. The stability of OTU assignments did not reflect the quality of the
assignments. Depending on the dataset being analyzed, the average linkage and
the distance and abundance-based greedy clustering methods generated OTUs
that were more likely to represent the actual distances between sequences than
the open and closed-reference methods. We also demonstrated that for the greedy
algorithms VSEARCH produced assignments that were comparable to those
produced by USEARCH making VSEARCH a viable free and open source alternative
to USEARCH. Further interrogation of the reference-based methods indicated
that when USEARCH or VSEARCH were used to identify the closest reference, the
OTU assignments were sensitive to the order of the reference sequences because
the reference sequences can be identical over the region being considered. More
troubling was the observation that while both USEARCH and VSEARCH have a high
level of sensitivity to detect reference sequences, the specificity of those matches was
poor relative to the true best match.
Discussion. Our analysis calls into question the quality and stability of OTU
assignments generated by the open and closed-reference methods as implemented
in current version of QIIME. This study demonstrates that de novo methods are
the optimal method of assigning sequences into OTUs and that the quality of these
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assignments needs to be assessed for multiple methods to identify the optimal
clustering method for a particular dataset.

Subjects Computational Biology, Ecology, Microbiology
Keywords 16S rRNA gene sequences, OTU, Next generation sequencing, Bioinformatics,
Microbial ecology, Microbiome, Culture-independent, mothur, QIIME

INTRODUCTION
The ability to affordably generate millions of 16S rRNA gene sequences has allowed

microbial ecologists to thoroughly characterize the microbial community composition

of hundreds of samples. To simplify the complexity of these large datasets, it is helpful to

cluster sequences into meaningful bins. These bins, commonly known as operational tax-

onomic units (OTUs), are used to compare the biodiversity contained within and between

different samples (Schloss & Westcott, 2011). Such comparisons have enabled researchers

to characterize the microbiota associated with the human body (e.g., Huttenhower et al.,

2012), soil (e.g., Shade et al., 2013), aquatic ecosystems (e.g., Gilbert et al., 2011), and

numerous other environments. Within the field of microbial ecology, a convention has

emerged where sequences are clustered into OTUs using a threshold of 97% similarity

or a distance of 3%. One advantage of the OTU-based approach is that the definition

of the bins is operational and can be changed to suit the needs of the particular project.

However, with the dissemination of clustering methods within software such as mothur

(Schloss et al., 2009), QIIME (Caporaso et al., 2010), and other tools (Sun et al., 2009; Edgar,

2010; Edgar, 2013; Cai & Sun, 2011; Mahé et al., 2014), it is important to understand how

different clustering methods implement this conventional OTU threshold. Furthermore, it

is necessary to understand how the selected method affects the precision and accuracy of

assigning sequences to OTUs. Broadly speaking, three approaches have been developed to

assign sequences to OTUs.

The first approach has been referred to as phylotyping (Schloss & Westcott, 2011) or

closed-reference clustering (Navas-Molina et al., 2013). This approach involves comparing

sequences to a curated database and then clustering sequences into the same OTU that

are similar to the same reference sequence. Reference-based clustering methods suffer

when the reference does not adequately reflect the biodiversity of the community. If a large

fraction of sequences are novel, then they cannot be assigned to an OTU. In addition,

the reference sequences are selected because they are less than 97% similar to each other

over the full length of the gene; however, it is known that the commonly used variable

regions within the 16S rRNA gene do not evolve at the same rate as the full-length gene

(Schloss, 2010; Kim, Morrison & Yu, 2011). Thus, a sequence representing a fragment of

the gene may be more than 97% similar to multiple reference sequences. Defining OTUs

in the closed-reference approach is problematic because two sequences might be 97%

similar to the same reference sequence, but they may only be 94% similar to each other.

Alternatively, a sequence may be equally similar to two or more reference sequences. An
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alternative to this approach is to use a classifier to assign a taxonomy to each sequence so

that sequences can be clustered at a desired level within the Linnean taxonomic hierarchy

(Schloss & Westcott, 2011). The strengths of the reference-based methods include their

speed, potential for trivial parallelization, ability to compare OTU assignments across

studies, and the hope that as databases improve, the OTU assignments will also improve.

The second approach has been referred to as distance-based (Schloss & Westcott, 2011)

or de novo clustering (Navas-Molina et al., 2013). In this approach, the distance between

sequences is used to cluster sequences into OTUs rather than the distance to a reference

database. In contrast to the efficiency of closed-reference clustering, the computational

cost of hierarchical de novo clustering methods scales quadratically with the number of

unique sequences. The expansion in sequencing throughput combined with sequencing

errors inflates the number of unique sequences resulting in the need for large amounts

of memory and time to cluster the sequences. If error rates can be reduced through

stringent quality control measures, then these problems can be overcome (Kozich et al.,

2013). As an alternative, heuristics have been developed to approximate the clustering

of hierarchical methods (Sun et al., 2009; Edgar, 2010; Mahé et al., 2014). Two related

heuristics implemented in USEARCH were recently described: distance-based greedy

clustering (DGC) and abundance-based greedy clustering (AGC) (Edgar, 2010; He et al.,

2015). These greedy methods cluster sequences within a defined similarity threshold of

an index sequence or create a new index sequence. If a sequence is more similar than

the defined threshold, it is assigned to the closest centroid based (i.e., DGC) or the

most abundant centroid (i.e., AGC). One critique of de novo approaches is that OTU

assignments are sensitive to the input order of the sequences (Mahé et al., 2014; He

et al., 2015). Whether the differences in assignments is meaningful is unclear and the

variation in results could represent equally valid clustering of the data. The strength of

de novo clustering is its independence of references for carrying out the clustering step.

For this reason, de novo clustering has been preferred across the field. After clustering, the

classification of each sequence can be used to obtain a consensus classification for the OTU

(Schloss & Westcott, 2011).

The third approach, open-reference clustering, is a hybrid of the closed-reference and

de novo approaches (Navas-Molina et al., 2013; Rideout et al., 2014). Open-reference

clustering involves performing closed-reference clustering followed by de novo clustering

on those sequences that are not sufficiently similar to the reference. In theory, this method

should exploit the strengths of both closed-reference and de novo clustering; however,

the different OTU definitions employed by commonly used closed-reference and de novo

clustering implementations pose a possible problem when the methods are combined.

An alternative to this approach has been to classify sequences to a bacterial family or

genus and then assign those sequences to OTUs within those taxonomic groups using the

average linkage method (Schloss & Westcott, 2011). For example, all sequences classified as

belonging to the Porphyromonadaceae would then be assigned to OTUs using the average

linkage method using a 3% distance threshold. Those sequences that did not classify to

a known family would also be clustered using the average linkage method. An advantage
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of this approach is that it lends itself nicely to parallelization since each taxonomic group

is seen as being independent and can be processed separately. Such an approach would

overcome the difficulty of mixing OTU definitions between the closed-reference and de

novo approaches; however, it would still suffer from the problems associated with database

quality and classification error.

The growth in options for assigning sequences using each of these three broad

approaches has been considerable. It has been difficult to objectively assess the quality

of OTU assignments. Some have focused on the time and memory required to process a

dataset (Sun et al., 2009; Cai & Sun, 2011; Mahé et al., 2014; Rideout et al., 2014). These are

valid parameters to assess when judging a clustering method, but have little to say about the

quality of the OTU assignments. Others have attempted to judge the quality of a method

by its ability to generate data that parallels classification data (White et al., 2010; Sun et al.,

2011; Cai & Sun, 2011). This approach is problematic because bacterial taxonomy often

reflects historical biases amongst bacterial systematicists. Furthermore, it is well known

that the rates of evolution across lineages are not the same (Wang et al., 2007; Schloss, 2010).

A related approach has used clustering of mock community data to evaluate methods

(Huse et al., 2010; Barriuso, Valverde & Mellado, 2011; Bonder et al., 2012; Chen et al., 2013;

Edgar, 2013; Mahé et al., 2014; May et al., 2014). Yet these approaches ignore the effects

of sequencing errors that tend to accumulate with sequencing depth and represent highly

idealized communities that lack the phylogenetic diversity of real microbial communities

(Schloss, Gevers & Westcott, 2011; Kozich et al., 2013). Others have assessed the quality of

clustering based on their ability to generate the same OTUs generated by other methods

(Rideout et al., 2014; Schmidt, Rodrigues & Mering, 2014b). This is problematic because

it does not solve the fundamental question of which method is optimal. The concept of

ecological consistency as a metric of quality asserts that sequences that cluster into the

same OTU should share similar ecological affiliations (Koeppel & Wu, 2013; Preheim et

al., 2013; Schmidt, Rodrigues & Mering, 2014a). Although this is an intriguing approach

and is a quantitative metric, it is unclear how the metric would be objectively validated.

We recently proposed an approach for evaluating OTU assignments using the distances

between pairs of sequences (Schloss & Westcott, 2011). We were able to synthesize the

relationship between OTU assignments and the distances between sequences using the

Matthew’s correlation coefficient (MCC; Matthews, 1975). MCC can be interpreted as

representing the correlation between the observed and expected classifications and can

vary between −1.0 and 1.0. The strength of the MCC, as implemented by Schloss & Westcott

(2011), is that it is an objective approach to assessing the quality of the OTU assignments

that can be calculated for any set of OTU assignments where there is a distance matrix and

a specific threshold without relying on an external reference.

A recent analysis by He and colleagues (2015) characterized the three general clustering

approaches by focusing on what they called stability. They defined stability as the ability

of a method to provide the same clustering on a subset of the data as was found in the full

dataset. Their concept of stability did not account for the quality of the OTU assignments

and instead focused on the precision of the assignments. A method may be very stable, but
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of poor quality. In the current analysis, we assessed the quality and stability of the various

clustering methods. Building on our previous analysis of clustering methods, our hypothe-

sis was that the methods praised by the He study for their stability actually suffered a lack of

quality. In addition, we assess these parameters in light of sequence quality using the origi-

nal 454 dataset and a larger and more modern dataset generated using the MiSeq platform.

METHODS
454 FLX-generated Roesch Canadian soil dataset
After obtaining the 16S rRNA gene fragments from GenBank (accessions

EF308591–EF361836), we followed the methods outlined by the He study by removing

any sequence that contained an ambiguous base, was identified as being a chimera, and fell

outside a defined sequence length. Although they reported observing a total of 50,542

sequences that were represented by 13,293 unique sequences, we obtained a total of

50,946 sequences that were represented by 13,393 unique sequences. Similar to the He

study, we randomly sampled, without replacement, 20, 40, 60, and 80% of the sequences

from the full data set. The random sampling was repeated 30 times. The order of the

sequences in the full dataset was randomly permuted without replacement to generate an

additional 30 datasets. To perform the hierarchical clustering methods and to generate a

distance matrix we followed the approach of the He study by calculating distances based

on pairwise global alignments using the pairwise.dist command in mothur using the

default Needleman-Wunsch alignment method and parameters. It should be noted that

this approach has been strongly discouraged (Schloss, 2012). Execution of the hierarchical

clustering methods was performed as described in the original He study using mothur

(v.1.37) and using the QIIME (v.1.9.1) parameter profiles provided in the supplementary

material from the He study for the greedy and reference-based clustering methods.

MiSeq-generated Murine gut microbiota dataset
The murine 16S rRNA gene sequence data generated from the V4 region using an

Illumina MiSeq was obtained from http:/www.mothur.org/MiSeqDevelopmentData/

StabilityNoMetaG.tar and was processed as outlined in the original study (Kozich et al.,

2013). Briefly, 250-nt read pairs were assembled into contigs by aligning the reads and

correcting discordant base calls by requiring one of the base calls to have a Phred quality

score at least 6 points higher than the other. Sequences where it was not possible to resolve

the disagreement were culled from the dataset. The sequences were then aligned to a

SILVA reference alignment (Pruesse et al., 2007) and any reads that aligned outside of the

V4 region were removed from the dataset. Sequences were pre-clustered by combining

the abundances of sequences that differed by 2 or fewer nucleotides of a more abundant

sequence. Each of the samples was then screened for chimeric sequences using the default

parameters in UCHIME (Edgar et al., 2011). The resulting sequences were processed in the

same manner as the Canadian soil dataset with the exception that the distance matrices

were calculated based on the SILVA-based alignment.
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Analysis of reference database
We utilized the 97% OTUs greengenes reference sequence and taxonomy data (v.13.8) that

accompanies the QIIME installation. Because the greengenes reference alignment does a

poor job of representing the secondary structure of the 16S rRNA gene (Schloss, 2010), we

realigned the FASTA sequences to a SILVA reference alignment to identify the V4 region of

the sequences.

Calculation of Matthew’s Correlation Coefficient (MCC)
The MCC was calculated by two approaches in this study using only the dereplicated

sequence lists. First, we calculated the MCC to determine the stability of OTU assignments

following the approach of the He study. We assumed that the clusters obtained from the 30

randomized full datasets were correct. We counted the number of sequence pairs that were

in the same OTU for the subsetted dataset and the full dataset (i.e., true positives; TP), that

were in different OTUs for the subsetted dataset and the full dataset (i.e., true negatives;

TN), that were in the same OTU for the subsetted dataset and different OTUs in the full

dataset (i.e., false positives; FP), and that were in different OTUs for the subsetted dataset

and the same OTU in the full dataset (i.e., false negatives; FN). For each set of 30 random

subsamplings of the dataset, we counted these parameters against the 30 randomizations of

the full dataset. This gave 900 comparisons for each fraction of sequences being used in the

analysis. The Matthew’s correlation coefficient was then calculated as:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

Second, we calculated the MCC to determine the quality of the clusterings as previously

described (Schloss & Westcott, 2011). Briefly, we compared the OTU assignments for

pairs of sequences to the distance matrix that was calculated between all pairs of aligned

sequences. For each dataset that was clustered, those pairs of sequences that were in the

same OTU and had a distance less than 3% were TPs, those that were in different OTUs

and had a distance greater than 3% were TNs, those that were in the same OTU and had

a distance greater than 3% were FPs, and those that were in different OTUs and had a

distance less than 3% were FNs. The MCC was counted for each dataset using the formula

above as implemented in the sens.spec command in mothur. To judge the quality of

the Swarm-generated OTU assignments we calculated the MCC value using thresholds

incremented by 1% between 0 and 5% and selected the threshold that provided the optimal

MCC value.

Software availability
A reproducible workflow including all scripts and this manuscript as a literate program-

ming document are available at https://github.com/SchlossLab/Schloss Cluster PeerJ

2015. The workflow utilized QIIME (v.1.9.1; Caporaso et al., 2010), mothur (v.1.37.0;

Schloss et al., 2009), USEARCH (v.6.1; Edgar, 2010), VSEARCH (v.1.5.0; Rognes et al.,

2015), Swarm (v.2.1.1; Mahé et al., 2014), and R (v.3.2.0; R Core Team, 2015). The SL, AL,

and CL methods are called nearest neighbor (NN), average neighbor (AN), and furthest
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neighbor (FN) in mothur; we have used the terminology from the He study to minimize

confusion. The knitr (v.1.10.5; Xie, 2013), Rcpp (v. 0.11.6; Eddelbuettel, 2013), rentrez

(v. 1.0.0; Winter, Chamberlain & Guangchun, 2015), and jsonlite (v. 0.9.16; Ooms, 2014)

packages were used within R.

RESULTS AND DISCUSSION
Summary and replication of He study
We obtained the Canadian soil dataset from Roesch et al. (2007) and processed the

sequences as described by He and colleagues. Using these data, we reconsidered three of

the more critical analyses performed in the He study.

First, we sought to quantify whether the OTU assignments observed for a subset of the

data represented the same assignments that were found with the full dataset. The He study

used the MCC to quantify the degree to which pairs of sequences were in the same OTUs in

subsampled and full datasets. A more robust approach would utilize metrics that quantify

the mutual information held between two sets of clusterings and has been applied to assess

inter-method variation in OTU composition (Schmidt, Rodrigues & Mering, 2014b). To

maintain consistency with the original He study, we also calculated the MCC value as

they described. The He study found that when they used the open and closed-reference

methods the OTUs formed using the subsetted data most closely resembled those of the

full dataset. Among the de novo methods they observed that the AGC method generated

the most stable OTUs followed by the single linkage (SL), DGC, complete linkage (CL),

and average linkage (AL) methods. We first calculated the MCC for the OTU assignments

generated by each of the clustering methods using 20, 40, 60, and 80% of the sequences

relative to the OTU composition formed by the methods using the full dataset (see

‘Methods’ for description; Fig. 1A). Similar to the He study, we replicated each method

and subsampled to the desired fraction of the dataset 30 times. Multiple subsamplings were

necessary because a random number generator is used in some of the methods to break ties

where pairs of sequences have the same distance between them. Across these sequencing

depths, we observed that the stability of the OTUs generated by the SL and CL methods

were highly sensitive to sampling effort relative to the OTUs generated by the AL, AGC,

and DGC methods (Fig. 1A). Our results (Fig. 1B) largely confirmed those of Fig. 4C in

the He study with one notable exception. The He study observed a broad range of MCC

values among their AL replicates when analyzing OTUs generated using 60% of the data.

This result appeared out of character and was not explained by the authors. They observed

a mean MCC value of approximately 0.63 (95% CI [0.15–0.75]). In contrast, we observed

a mean value of 0.93 (95% CI [0.91–0.95]). This result indicates that the AL assignments

were far more stable than indicated in the He study. Regardless, although the assignments

are quite stable, it does support the assertion that the OTU assignments observed for the

subset of the data do not perfectly match the assignments that were found with the full

dataset as they did with the reference-based methods; however, the significance of these

differences is unclear.
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Figure 1 Comparison of the stability (A, B) and quality (C, D) of de novo and reference-based
clustering methods using the Canadian soil dataset. The average stability of the OTUs was determined
by calculating the MCC with respect to the OTU assignments for the full dataset using varying sized
subsamples. The quality of the OTUs was determined by calculating the MCC with respect to the
distances between the sequences using varying sized subsamples. Thirty randomizations were performed
for each fraction of the dataset and the average and 95% confidence interval are presented when using
60% of the data. The vertical gray lines in A and C indicates the fraction of the dataset represented in B and
D, respectively. The color and shape of the plotting symbol is the same between the different panels and
is described along the x-axis of panel D. The optimum threshold for the Swarm-generated assignments
was 3%.

Second, the He study and the original Roesch study showed that rarefaction curves

calculated using CL-generated OTU assignments obtained using a subsample of the

sequencing data did not overlap with rarefaction curves generated using OTU assignments

generated from the full dataset. The He and Roesch studies both found that the CL method

produced fewer OTUs in the subset than in the rarefied data. In addition, the He study

found that the SL method produced more OTUs, the AGC produced fewer, and the
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Figure 2 The clustering methods varied in their ability to generate the same number of OTUs using a
subset of the data as were observed when the full dataset was rarefied. The subsetted data are depicted
by closed circles and the data from the rarefied full dataset is depicted by the open circles.

other methods produced similar numbers of OTUs than expected when comparing the

subsetted data to the rarefied data. Our results support those of these previous studies

(Fig. 2). It was clear that inter-method differences were generally more pronounced than

the differences observed between rarefying from the full dataset and from clustering the

subsetted data. The number of OTUs observed was largest using the CL method, followed

by the open-reference method. The AL, AGC, and DGC methods all provided comparable

numbers of OTUs. Finally, the closed-reference and SL methods generated the fewest

OTUs.

Third, the authors attempted to describe the effects of the OTU assignment instability

on comparisons of communities. They used Adonis to test whether the community

structure represented in subsetted communities resembled that of the full dataset when

only using the unstable OTUs (Anderson, 2001). Although they were able to detect

significant p-values, they appeared to be of marginal biological significance. Adonis R

statistics close to zero indicate the community structures from the full and subsetted

datasets overlapped while values of one indicate the communities are completely different.

The He study observed adonis R statistics of 0.02 (closed-reference), 0.03 (open-reference),

0.07 (CL, AGC, DGC), and 0.16 (SL and AL). Regardless of the statistical or biological

significance of these results, the analysis was tautological since, by definition, representing
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communities based on their unstable OTUs would yield differences. Furthermore, the de

novo and open-reference approaches do not consistently label the OTUs that sequences

belong to when the clustering methods are run multiple times with different random

number seeds. To overcome this, the authors selected representative sequences from

each OTU and used those representative sequences to link OTU assignments between

the different sized sequence sets. It was not surprising that the only analysis that did

not provide a significant p-value was for the closed-reference analysis, which is the only

analysis that provides consistent OTU labels. Finally, the authors built off of this analysis to

count the number of OTUs that were differentially represented between the subsetted and

full datasets by each method. This entire analysis assumed that the OTUs generated using

the full dataset were correct, which was an unsubstantiated assumption since the authors

did not assess the quality of the OTU assignments.

This re-analysis of the He study raised five complementary questions. First, how do the

various methods vary in the quality of their OTU assignments? Second, how generalizable

are these results to modern datasets generated using a large number of sequences that

were deeply sequenced? Third, how does the stability and quality of OTU assignments

generated by new methods compare to those analyzed in the He study? Fourth, are there

open-source alternatives to USEARCH that perform just as well? Finally, although the

stability of reference-based methods did not appear to be impacted by the input order of

the sequences to be assigned to OTUs, is the stability of reference-based methods impacted

by the order of the reference sequences? In the remainder of the ‘Results and Discussion’ we

address each of these questions.

How do the various methods vary in the quality of their OTU
assignments?
More important than the stability of OTUs is whether sequences are assigned to the correct

OTUs. A method can generate highly stable OTUs, but the OTU assignments may be

meaningless if they poorly represent the specified cutoff and the actual distance between

the sequences. To assess the quality of OTU assignments by the various methods, we

made use of the pairwise distance between the unique sequences to count the number

of true positives and negatives and the number of false positives and negatives for each

method and sampling depth. Counting the frequency of these different classes allowed

us to judge how each method balanced the ratio of true positives and negatives to false

positives and negatives using the MCC. We used the average MCC value as a measure

of a method’s quality and its variation as a measure of its consistency. We made three

important observations. First, each of the de novo methods varied in how sensitive their

MCC values were to additional sequences (Fig. 1C). The SL and CL methods were the most

sensitive; however, the quality of the OTU assignments did not meaningfully differ when

80 or 100% of the data were assigned to OTUs using the de novo methods. Second, the

AL method had higher MCC values than the other methods followed by DGC, AGC, CL,

open-reference, and closed-reference, and SL (Fig. 1D). Third, with the possible exception

of the CL method, the MCC values for each of the methods only demonstrated a small
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amount of variation between runs of the method with a different ordering of the input

sequences. This indicates that although there may be variation between executions of the

same method, they produced OTU assignments that were of equal quality. Revisiting the

concept of stability, we question the value of obtaining stable OTUs when the full dataset is

not optimally assigned to OTUs. Our analysis indicates that the most optimal method for

assigning the Canadian soils sequences to OTUs using a 97% threshold was the AL method.

How generalizable are these results to modern datasets generated
using a large number of sequences that were deeply sequenced?
Three factors make the Canadian soil dataset less than desirable to evaluate clustering

methods. First, it was one of the earliest 16S rRNA gene sequence datasets published using

the 454 FLX platform. Developments in sequencing technology now permit the sequencing

of millions of sequences for a study. In addition, because the original Phred quality scores

and flowgram data are not available, it was not possible for us to adequately remove

sequencing errors (Schloss, Gevers & Westcott, 2011). The large number of sequencing

errors that one would expect to remain in the dataset are likely to negatively affect the

performance of all of the clustering methods. Second, the dataset used in the He study

covered the V9 region of the 16S rRNA gene. For a variety of reasons, this region is not

well represented in databases, including the reference database used by the closed and

open-reference methods. Of the 99,322 sequences in the default QIIME database, only

48,824 fully cover the V9 region. In contrast, 99,310 of the sequences fully covered the

V4 region. Inadequate coverage of the V9 region would adversely affect the ability of the

reference-based methods to assign sequences to OTUs. Third, our previous analysis has

shown that the V9 region evolves at a rate much slower than the rest of the gene (Schloss,

2010). With these points in mind, we compared the clustering assignment for each of these

methods using a time series experiment that was obtained using mouse feces (Schloss et al.,

2012; Kozich et al., 2013). The MiSeq platform was used to generate 2,825,000 sequences

from the V4 region of the 16S rRNA gene of 360 samples. Parallel sequencing of a mock

community indicated that the sequencing error rate was approximately 0.02% (Kozich et

al., 2013). Although no dataset is perfect for exhaustively testing these clustering methods,

this dataset was useful for demonstrating several points. First, when using 60% of the

data, the stability relationships amongst the different methods were similar to what we

observed using the Canadian soil dataset (Figs. 3A and 3B). With the exception of the

clusters generated using CL, the methods all performed very well with stabilities greater

than 0.91. Second, the MCC values calculated relative to the distances between sequences

were generally higher than was observed for the Canadian soil dataset for all of the methods

except the CL and SL methods. Surprisingly, the MCC values for the DGC (0.77) and AGC

(0.76) methods were comparable to the AL method (0.76; Figs. 3C and 3D). This result

suggests that the optimal method is likely to be database-dependent.

Finally, as was observed with the Canadian soil dataset, there was little variation in the

MCC values observed among the 30 randomizations. Therefore, although the methods

have a stochastic component, the OTU assignments did not vary meaningfully between
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Figure 3 Comparison of the stability (A, B) and quality (C, D) of de novo and reference-based
clustering methods using the murine dataset. The average stability of the OTUs was determined by
calculating the MCC with respect to the OTU assignments for the full dataset using varying sized
subsamples. The quality of the OTUs was determined by calculating the MCC with respect to the
distances between the sequences using varying sized subsamples. Thirty randomizations were performed
for each fraction of the dataset and the average and 95% confidence interval are presented when using
60% of the data. The vertical gray lines in A and C indicates the fraction of the dataset represented in B and
D, respectively. The color and shape of the plotting symbol is the same between the different panels and
is described along the x-axis of panel D. The optimum threshold for the Swarm-generated assignments
was 2%.

runs. The results from both the Canadian soil and murine microbiota datasets demonstrate

that the de novo methods can generate stable OTU assignments and that the overall quality

of the assignments were consistent. Most importantly, these analyses demonstrate that the

OTU assignments using the AL, AGC, and DGC de novo methods were consistently better

than either of the reference-based methods.
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Figure 4 The stability and quality of USEARCH and VSEARCH OTUs generated by the AGC and DGC
methods were similar. The stability of the OTUs was determined by calculating the MCC for OTUs
calculated using 60% of the data relative to the OTU assignments for the full dataset. The quality of the
OTUs was determined by calculating the MCC of the OTUs calculated using the full dataset with respect
to the distances between the sequences. The error bars represent the 95% confidence interval across the
30 randomizations.

How does the stability and quality of OTU assignments generated
by new methods compare to those analyzed in the He study?
The Swarm algorithm is a recently proposed de novo method for assigning sequences to

OTUs that uses user-defined parameters to break up chains generated by SL clustering

(Mahé et al., 2014). Swarm was originally validated by comparing the results against the

expected clusters formed based on the taxonomic composition of a mock community.

Similar to the authors of the He study, the Swarm developers suggest that methods

are needed that are insensitive to input order. Use of Swarm on the Canadian soil and

murine datasets demonstrated that similar to the other de novo methods, Swarm’s OTU

assignments changed as sequences were added (Figs. 1A and 3A). When we compared

the OTU assignments for both datasets when using all of the sequence data, the variation

in MCC values across the 30 randomizations were not meaningfully different (Figs. 1D

and 3D). Most importantly, when we selected the distance threshold that optimized the

MCC value, the quality of the OTU assignments was close to that of the AL assignments

when using the Canadian soil dataset and considerably worse than that of the murine

dataset (Figs. 1D and 3D). Interestingly, the distance thresholds that resulted in the largest

MCC values were 3 and 2% for the Canadian soil and murine datasets, respectively. This

suggests that distance-based OTU definitions are not consistent across datasets when using

the Swarm algorithm, although they do appear to be within the neighborhood of 3%.

Finally, the Swarm developers indicated that hierarchical de novo algorithms were too

impractical to use on large MiSeq-generated datasets. Our ability to apply AL to the large
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mouse dataset and even larger datasets suggests that it is not necessary to sacrifice OTU

assignment quality for speed (e.g., Schubert, Sinani & Schloss, 2015; Zackular et al., 2015).

Are there open-source alternatives to USEARCH that perform just
as well?
For some datasets the AGC and DGC methods appear to perform as well or better than

the hierarchical clustering methods. As originally described in the He study, the AGC and

DGC methods utilized the USEARCH program and the DGC method is used for clustering

in UPARSE (Edgar, 2010; Edgar, 2013). The source code for USEARCH is not publicly

available and only the 32-bit executables are available for free to academic users. Access

for non-academic users and those needing the 64-bit version is available commercially

from the developer. An alternative to USEARCH is VSEARCH, which is being developed in

parallel to USEARCH as an open-source alternative. One subtle difference between the two

programs is that USEARCH employs a heuristic to generate candidate alignments whereas

VSEARCH generates the actual global alignments. The VSEARCH developers claim that

this difference enhances the sensitivity of VSEARCH relative to USEARCH. Using the two

datasets, we determined whether the AGC and DGC methods, as implemented by the two

programs, yielded OTU assignments of similar quality. In general the overall trends that

we observed with the USEARCH-version of AGC and DGC were also observed with the

VSEARCH-version of the methods (Fig. 4). When we compared the two implementations

of the AGC and DGC methods, the OTUs generated by the VSEARCH-version of the

methods were as stable or more stable than the USEARCH-version when using 60% of

the datasets. In addition, the MCC values for the entire datasets, calculated relative to the

distance matrix, were virtually indistinguishable. These results are a strong indication

that VSEARCH is a suitable and possibly better option for executing the AGC and

DGC methods.

Is the stability of reference-based methods impacted by the order
of the reference sequences?
The He study and our replication attempt validated that the closed-reference method

generated perfectly stable OTUs. This was unsurprising since, by definition, the method

is designed to return one-to-one mapping of reads to a reference. Furthermore, because

it treats the input sequences independently the input order or use of a random number

generator is not an issue. An important test that was not performed in the He study

was to determine whether the clustering was sensitive to the order of the sequences

in the database. The default database used in QIIME, which was also used in the He

study, contains full-length sequences that are at most 97% similar to each other. We

randomized the order of the reference sequences 30 times and used them to carry out

the closed-reference method with the full murine dataset, which contained 32,106 unique

sequences (Fig. 5). Surprisingly, we observed that the number of OTUs generated was

not the same in each of the randomizations. On average there were 28,059 sequences

that mapped to a reference OTU per randomization (range from 28,007 to 28,111). The

original ordering of the reference resulted in 27,876 sequences being mapped, less than the
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Figure 5 The number of closed-reference OTUs observed in the murine dataset when using
USEARCH, VSEARCH, and without a heuristic. In addition to the default ordering of the references
provided with the QIIME package, the reference sequences were randomized 30 times; the order of the
murine dataset was not randomized. Regardless of whether the default or randomized ordering was used,
the number of OTUs generated using VSEARCH did not differ. The non-heuristic approach calculated
the exact distance between the murine sequences and the reference sequences and assigned the sequences
to the reference with the smallest distance.

minimum observed number of mapped sequences when the references were randomized.

This surprising result was likely due to the performance of the USEARCH heuristic.

To test this further, we substituted VSEARCH for USEARCH in the closed-reference

method. When we used VSEARCH the original ordering of the reference sequences and all

randomizations were able to map 27,737 sequences to reference OTUs. When we calculated

the true distance between each of the murine sequences and the references, we were able

to map 28,238 of the murine sequences to the reference sequences when using a 97%

similarity threshold without the use of a heuristic. This result indicates that the closed

reference approach, whether using USEARCH or VSEARCH, does not exhaustively or

accurately map reads to the closest reference. To quantify this further, we calculated the

MCC for the USEARCH and VSEARCH assignments relative to the assignments using the

non-heuristic approach. Using USEARCH the average MCC was 0.78 (range: 0.75–0.80)

and using VSEARCH the average MCC was 0.65 (range: 0.64–0.66). The two methods had

similar sensitivities (USEARCH: 0.98 and VSEARCH: 0.97), but the USEARCH specificity

(0.73) was considerably higher than VSEARCH (0.60). Overall, these results indicate that
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although heuristic approaches may be fast, they do a poor job of mapping reads to the

correct reference sequence relative to non-heuristic approaches.

We also observed that regardless of whether we used USEARCH or VSEARCH, the

reference OTU labels that were assigned to each OTU differed between randomizations.

When we used USEARCH to perform closed-reference clustering, an average of 57.38% of

the labels were shared between pairs of the 30 randomizations (range = 56.14–59.55%). If

we instead used VSEARCH an average of 56.23% of the labels were shared between pairs

of the 30 randomizations (range = 53.48–59.12%). To better understand this result, we

further analyzed QIIME’s reference database. We hypothesized that within a given region

there would be sequences that were more than 97% similar and possibly identical to each

other. When a sequence was used to search the randomized databases, it would encounter a

different reference sequence as the first match with each randomization. Among the 99,310

reference sequences that fully overlap the V4 region, there were 7,785 pairs of sequences

that were more than 97% similar to each other over the full length of the 16S rRNA

gene. When the extracted V4 sequences were dereplicated, we identified 88,347 unique

sequences. Among these dereplicated V4 sequences there were 311,430 pairs of sequences

that were more than 97% similar to each other. The presence of duplicate and highly

similar V4 reference sequences explains the lack of labeling stability when using either

USEARCH or VSEARCH to carry out the closed-reference method. We suspect that the

reference database was designed to only include sequences that were at most 97% similar to

each other as a way to overcome the limitations of the USEARCH search heuristic.

Beyond comparing the abundance of specific OTUs across samples, the reference

database is used in the open and closed-reference methods to generate OTU labels that can

be used in several downstream applications. It is commonly used to extract information

from a reference phylogenetic tree to carrying out UniFrac-based analyses (Hamady,

Lozupone & Knight, 2009) and to identify reference genomes for performing analyses such

as PICRUSt (Langille et al., 2013). Because these downstream applications depend on

the correct and unique labeling of the OTUs, the lack of label stability is problematic. As

one illustration of the effects that incorrect labels would have on an analysis, we asked

whether the duplicate sequences had the same taxonomies. Among the 3,132 V4 reference

sequences that had one duplicate, 443 had discordant taxonomies. Furthermore, among

those 1,699 V4 reference sequences with two or more duplicates, 698 had discordant

taxonomies. Two V4 reference sequences mapped to 30 and 10 duplicate sequences and

both contained 7 different taxonomies. Among the V4 sequences within the database,

there was also a sequence that had 131 duplicates and represented 5 different taxonomies.

When we analyzed the 28,238 sequences that mapped to the V4 reference sequences using

a non-heuristic approach, we observed that 18,315 of the sequences mapped to more

than one reference sequence. Of these sequences, 13,378 (73.04%) mapped to references

that were identical over the V4 region and 4,937 (26.96%) mapped equally well to two or

more references that were not identical over the V4 region. Among the combined 18,315

sequences that mapped to multiple reference sequences, the taxonomy of the multiple
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reference sequences conflicted for 3,637 (19.86%). Together, these results demonstrate

some of the considerable problems with the reference-based clustering of sequences.

CONCLUSIONS
It is worth noting that the analysis from the Roesch study that motivated the He study

is not typical of microbial ecology studies. First, their analysis was based on a single

soil sample. Researchers generally have dozens or hundreds of samples that are pooled

and clustered together to enable comparison across samples. Second, all of the sequence

data from these datasets is usually pooled for a single analysis. Rarely would a researcher

rarefy their data prior to clustering since it can be more efficiently done after all of the

data are assigned to OTUs. Third, the CL method used in the original Roesch study has

since been shown to not generate optimal OTUs (Schloss & Westcott, 2011). As for the

approach used in the He study, the value of identifying stable OTUs is unclear. Although

there is concern that running the methods multiple times yields different clusterings, we

have shown that there is little variation in their quality. This suggests that the different

clusterings by the same method are equally good. Greater emphasis should be placed on

obtaining an optimal balance between splitting similar sequences into separate OTUs and

merging disparate sequences into the same OTU.

The approach of the current study quantified the effects of merging and splitting

OTUs by using an objective metric. Through the use of the pairwise distances between

sequences, we were able to use the MCC to demonstrate that, in general, the AL method

was consistently the optimal method for each dataset, but that Swarm, AGC, and DGC

sometimes perform as well as AL. At least for the murine dataset, Swarm also could be

among the methods that performed poorly. It is impossible to obtain a clustering with

no false positives or false negatives and the optimal method may vary by dataset. With

this in mind, researchers are encouraged to calculate and report their MCC values and

to use these values to justify using methods other than the AL. As an alternative to the

He study’s method of measuring stability, we propose using the variation in the quality

of the clustering of the full dataset. Given the tight 95% confidence intervals shown in

Figs. 1D and 3D, with the exception of CL, it is clear that this variation is quite small. This

indicates that although the order of the sequences being clustered can affect the actual

cluster assignments, the quality of those different clusterings is not meaningfully different.

Our analysis of those methods that implemented USEARCH as a method for clustering

sequences revealed that its heuristic limited its specificity. When we replaced USEARCH

with VSEARCH, the de novo clustering quality was as good or better. Although there may

be parameters in USEARCH that can be tuned to improve the heuristic, these parameters

are likely dataset dependent. Based on the data presented in this study, its availability

as an open source, and free program, VSEARCH should replace USEARCH in the de

novo clustering methods; however, USEARCH performed better than VSEARCH for

closed-reference clustering. Furthermore, although not tested in our study, VSEARCH

can be parallelized leading to potentially significant improvements in speed. Although

USEARCH and VSEARCH do not utilize aligned sequences, it is important to note that

Westcott and Schloss (2015), PeerJ, DOI 10.7717/peerj.1487 17/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.1487


a sequence curation pipeline including denoising, alignment, trimming to a consistent

region of the 16S rRNA gene, and chimera checking are critical to making proper

inferences (Schloss, Gevers & Westcott, 2011; Schloss, 2012; Kozich et al., 2013).

We have assessed the ability of reference-based clustering methods to capture the actual

distance between the sequences in a dataset in parallel with de novo methods. Several stud-

ies have lauded both the open and closed-reference approaches for generating reproducible

clusterings (Navas-Molina et al., 2013; Rideout et al., 2014; He et al., 2015), yet we have

shown that both reference-based approaches did a poor job of representing the distance

between the sequences compared to the de novo approaches. Although the OTU assign-

ments are reproducible and stable across a range of library sizes, the reference-based OTU

assignments are a poor representation of the data. We also observed that the assignments

were not actually reproducible when the order of the reference sequences was randomized.

When USEARCH was used, the actual number of sequences that mapped to the reference

changed depended on the order of the reference. Perhaps most alarming was that the

default order of the database provided the worst MCC of any of the randomizations we

attempted. This has the potential to introduce a systematic bias rather than a random error.

Even when we used VSEARCH to perform closed-reference clustering and were able to

obtain consistent clusterings, we observed that the labels on the OTUs differed between

randomizations. Because the OTU labels are frequently used to identify representative

sequences for those OTUs, variation in labels, often representing different taxonomic

groups, will have a detrimental effect on the interpretation of downstream analyses.

Because the open-reference method is a hybrid of the closed-reference and DGC

methods, it is also negatively affected by the various problems using USEARCH. An

added problem with the open-reference method is that the two phases of the method

employ different thresholds to define its OTUs. In the closed-reference step, sequences

must be within a threshold of a reference to be in the same OTU. This means that in the

worst case scenario two sequences that are 97% similar to a reference, and are joined into

the same OTU, may only be 94% similar to each other. In the DGC step, the goal is to

approximate the AL method which requires that, on average, the sequences within an OTU

are, on average, 97% similar to each other. The end result of the open-reference approach

is that sequences that are similar to previously observed sequences are clustered with one

threshold while those that are not similar to previously observed sequences are clustered

with a different threshold.

As the throughput of sequencing technologies have improved, development of

clustering algorithms must continue to keep pace. De novo clustering methods are

considerably slower and more computationally intensive than reference-based methods

and the greedy de novo methods are faster than the hierarchical methods. In our experience

(Kozich et al., 2013), the most significant detriment to execution speed of the de novo

methods has been the inadequate removal of sequencing error and chimeras. As the

rate of sequencing error increases so do the number of unique sequences that must be

clustered. The speed of the de novo methods scales approximately quadratically, so that

doubling the number of sequences results in a four-fold increase in the time required to
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execute the method. The rapid expansion in sequencing throughput has been likened to

the Red Queen in Lewis Carroll’s Through the Looking-Glass who must run in place to

keep up with her changing surroundings (Schloss et al., 2009). Microbial ecologists must

continue to refine clustering methods to better handle the size of their growing datasets,

but they must also take steps to improve the quality of the underlying data. Ultimately,

objective standards must be applied to assess the quality of the data and the quality of OTU

clustering.
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