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Abstract

Background: Colorectal cancer (CRC) is the second leading cause of death among cancers in the United States.
Although individuals diagnosed early have a greater than 90 % chance of survival, more than one-third of
individuals do not adhere to screening recommendations partly because the standard diagnostics, colonoscopy
and sigmoidoscopy, are expensive and invasive. Thus, there is a great need to improve the sensitivity of
non-invasive tests to detect early stage cancers and adenomas. Numerous studies have identified shifts in the
composition of the gut microbiota associated with the progression of CRC, suggesting that the gut microbiota may
represent a reservoir of biomarkers that would complement existing non-invasive methods such as the widely used
fecal immunochemical test (FIT).

Methods: We sequenced the 16S rRNA genes from the stool samples of 490 patients. We used the relative
abundances of the bacterial populations within each sample to develop a random forest classification model that
detects colonic lesions using the relative abundance of gut microbiota and the concentration of hemoglobin in
stool.

Results: The microbiota-based random forest model detected 91.7 % of cancers and 45.5 % of adenomas while FIT
alone detected 75.0 % and 15.7 %, respectively. Of the colonic lesions missed by FIT, the model detected 70.0 % of
cancers and 37.7 % of adenomas. We confirmed known associations of Porphyromonas assaccharolytica,
Peptostreptococcus stomatis, Parvimonas micra, and Fusobacterium nucleatum with CRC. Yet, we found that the loss
of potentially beneficial organisms, such as members of the Lachnospiraceae, was more predictive for identifying
patients with adenomas when used in combination with FIT.

Conclusions: These findings demonstrate the potential for microbiota analysis to complement existing screening
methods to improve detection of colonic lesions.

Background
Colorectal cancer (CRC) mortality has steadily declined
in recent decades, due in large part to increased screen-
ing [1]. Yet current screening tests, the fecal immuno-
chemical test (FIT) and the multitarget DNA test, have a
sensitivity of 7.6 % and 17.2 %, respectively, for detecting
non-advanced adenoma – just the type of early lesion
that screening is meant to identify [2]. Although struc-
tural exams including colonoscopy and sigmoidoscopy
are able to detect both adenomas and carcinomas, the

high cost and invasive nature are barriers for many
people. Fear, discomfort, and embarrassment are among
the most cited reasons patients choose to forego CRC
screening [3]. Likewise, the large disparity in screening
rates between those with and without health insurance
highlights the need for inexpensive screening methods
[1, 4, 5]. Unfortunately cheaper, less invasive stool-based
tests like guaic fecal occult blood test (gFOBT) and FIT
are unable to reliably detect adenomas [6]. The newly in-
troduced stool DNA panel has improved accuracy com-
pared to FIT, but is still limited in its ability to accurately
detect adenomas [2]. Thus there is need for novel screen-
ing methods that are inexpensive and capable of detecting
both cancer and adenomas.
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The gut microbiota, the collection of microorganisms
that inhabit the gastrointestinal tract, are one potential
source of biomarkers for detecting colonic lesions.
Numerous studies have observed alterations in the gut
bacterial communities of patients with CRC [7–12]. Ex-
periments in animal models have demonstrated that
such alterations have the potential to accelerate tumori-
genesis [13]. Furthermore, several members of the gut
microbiota have been shown to potentiate both the de-
velopment and progression of CRC by a variety of mech-
anisms [14–16]. Although each of these organisms may
play a role in certain cases of CRC, none of them is
present in every case. Therefore we postulate that no
one organism is an effective biomarker on its own and
that focusing on a single bacterial population excludes
the potential that the microbial etiology of the disease is
actually polymicrobial.

Two recent studies used statistical models that take
into account the abundances of multiple bacterial spe-
cies and the results of gFOBT to distinguish healthy in-
dividuals from those with CRC [17, 18]. The analysis by
Zackular et al. [17] used samples from a limited number
of participants (n = 30 normal, 30 adenoma, and 30 car-
cinoma), while that of Zeller et al. [18] had a larger co-
hort from multiple clinical sites (n = 156 and n = 335). A
shortcoming of the Zeller study was the pooling of par-
ticipants with non-advanced adenomas with control par-
ticipants as well as the exclusion of participants with
advanced adenomas. A limitation of both studies was
that they relied on gFOBT rather than FIT to detect
hemoglobin in stool. FIT provides a quantitative measure
of hemoglobin concentrations and has largely replaced
gFOBT clinically because of its improved sensitivity. Re-
gardless of their weaknesses, these studies demonstrated
the feasibility of using microbiome data to identify partici-
pants with colonic lesions.

In the present study, we demonstrate the potential for
microbiota analysis to complement FIT for improved de-
tection of colonic lesions, especially adenomas. We utilized
the random forest algorithm, which is a decision tree-based
machine learning algorithm for classification that accounts
for non-linear data and interactions among features and in-
cludes an internal cross-validation to prevent overfitting
[19]. With this method we identified bacterial populations
that could distinguish healthy individuals from those with
adenomas or carcinomas. In doing so, we confirmed previ-
ously observed associations of certain bacterial taxa with
CRC. Many lesions detected using the microbiota were dis-
tinct from those detected by FIT, suggesting the microbiota
could complement FIT to improve sensitivity. By incorpor-
ating data on hemoglobin and bacterial abundances into a
single model (labeled the multitarget microbiota test or
MMT), we were able to improve the sensitivity for aden-
omas and cancer compared to FIT alone.

Methods
Study design/patient sampling
Eligible patients for this study were aged at least 18 years,
willing to sign informed consent, able to tolerate re-
moval of 58 mL of blood, and willing to collect a stool
sample. Patient age at the time of enrollment was in the
range of 29–89 years with a median of 60 years. All
patients were asymptomatic and were excluded if they
had undergone surgery, radiation, or chemotherapy for
current CRC prior to baseline samples or had inflamma-
tory bowel disease, known hereditary non-polyposis
CRC, or familial adenomatous polyposis. Colonoscopies
were performed and fecal samples were collected from
participants in four locations: Toronto (ON, Canada),
Boston (MA, USA), Houston (TX, USA), and Ann Arbor
(MI, USA). Patient diagnoses were determined by colono-
scopic examination and histopathological review of any bi-
opsies taken. Patients with an adenoma greater than 1 cm,
more than three adenomas of any size, or an adenoma
with villous histology were classified as advanced aden-
oma. Whole evacuated stool was collected from each pa-
tient either prior to colonoscopy preparation or 1–2
weeks after colonoscopy. This has been shown to be suffi-
cient time for the microbiota to recover from colonoscopy
preparation [20]. Stool samples were packed in ice,
shipped to a processing center via next day delivery, and
stored at –80 °C. The University of Michigan Institutional
Review Board approved this study, and all participants
provided informed consent. This study conformed to the
guidelines of the Helsinki Declaration.

Fecal immunochemical tests
Fecal material for FIT was collected from frozen stool ali-
quots using OC FIT-CHEK sampling bottles (Polymedco
Inc.) and processed using an OC-Auto Micro 80 automated
system (Polymedco Inc.). Hemoglobin concentrations were
used for generating receiver operating characteristic (ROC)
curves for FIT and for building the MMT.

16S rRNA gene sequencing
DNA was extracted from approximately 50 mg of fecal
material from each participant using the PowerSoil-htp
96 Well Soil DNA isolation kit (MO BIO Laboratories)
and an epMotion 5075 automated pipetting system
(Eppendorf). The V4 region of the bacterial 16S rRNA
gene was amplified using custom barcoded primers and
sequenced as described previously using an Illumina
MiSeq sequencer [21]. The 490 samples were divided
into three sequencing runs to increase the per sample
sequencing depth. Although the same percentage of
samples from the three groups were represented on each
sequencing run, samples were randomly assigned to the
sequencing runs to avoid confounding our analysis based
on diagnosis or demographics.
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Sequence curation
The 16S rRNA gene sequences were curated using the
mothur software package (v1.36), as described previously
[21, 22]. Briefly, paired-end reads were merged into con-
tigs, screened for quality, aligned to SILVA 16S rRNA se-
quence database, and screened for chimeras. Sequences
were classified using a naive Bayesian classifier trained
against a 16S rRNA gene training set provided by the
Ribosomal Database Project (RDP) [23]. Curated se-
quences were clustered into operational taxonomic units
(OTUs) using a 97 % similarity cutoff with the average
neighbor clustering algorithm. Species-level classifica-
tions for OTUs of interest were determined by blasting
the predominant sequences within each OTU to the
NCBI 16S rRNA database. The putative species was only
reported for OTUs with greater than 99 % sequence
identity to a single species in the database; otherwise the
consensus RDP classification was used. The number of
sequences in each sample was rarefied to 10,000 per sample
to minimize the effects of uneven sampling. Only the 335
OTUs present in at least 5 % of samples were included in
the feature selection for the random forest models.

Statistical methods
All statistical analyses were performed using R (v.3.2.0).
Random Forest models were generated using the
AUCRF package [24]. All ROC curves presented for ran-
dom forest models are based on the out-of-bag (OOB)
error rates. For each model, leave-one-out and 10-fold
cross-validations were performed to further estimate the
generalization error of the model. The AUC of ROC
curves were compared using the method described by
DeLong et al. [25]. The optimal cutoff for the MMT was
determined using Youden’s J statistic [26]. This cutoff
was determined using the ROC curve for differentiating
cancer from normal. Comparisons of sensitivities of FIT
and the MMT at the same specificity were performed
using the method developed by Pepe et al. with 1000
bootsrap replicates [27]. All of the aforementioned sta-
tistics for analyzing ROC curves were performed using
the pROC package in R [28]. To control for diagnosis
while testing the effects of sex on the microbiome we used
PERMANOVA as implemented in the adonis function in
the vegan R package [29].

Results
Complementary detection of lesions by FIT and the
microbiota
We characterized the bacterial communities of stool sam-
ples from 490 patients using 16S rRNA gene sequencing.
Among these patients, 120 had CRC, 198 had adenomas,
and 172 had no colonic lesions. In addition to characteriz-
ing the bacterial community, we tested each sample for
the concentration of hemoglobin using FIT. With these

data, we compared the ability to detect lesions using FIT
to using a microbiota-based model. First, we developed a
random forest classification model for differentiating
healthy individuals from those with adenomas based on
the relative abundance of bacterial populations in stool.
We determined the optimal model using the AUC-RF al-
gorithm for maximizing the area under the curve (AUC)
of the ROC curve for a random forest model [24]. The op-
timal model utilized 22 bacterial populations (Additional
file 1: Figure S1A). The vast majority of OTUs in the
model (17 out of 22) belonged to the order Clostridales,
four were associated with the genus Bacteroides, and one
OTU was unclassified at the phylum level (Additional file
1: Figure S1B). The AUC for this and subsequent random
forest models were generated based on the OOB probabil-
ities for each sample. Additional leave-one-out and 10-
fold cross validations showed no significant difference in
AUC compared to the OOB AUC (Additional file 2: Fig-
ure S2A). The AUC for the microbiota model (0.673) was
significantly different from a random assignment (p
<0.001), but not significantly different from that of FIT
(FIT AUC:0.639, p >0.05, Fig. 1a). At the 100 ng/mL cutoff,
FIT detected 15.7 % of adenomas with a specificity of 97.1 %.
Setting the microbiota model to the same 97.1 % specificity
resulted in 18.2 % sensitivity for adenomas. When comparing
the results of the tests for each sample, only 2.5 % of
adenomas were detected by both tests, while 28.8 % were
detected by only one of the two tests (Fig. 1b). Thus, the two
tests detected small but distinct subsets of adenomas.

Next we generated a random forest model for differenti-
ating normal individuals from those with cancer using the
relative abundance of 34 bacterial populations (Additional
file 3: Figure S3A and S3B). Consistent with previous
observations, the bacteria most strongly associated with
CRC belonged to taxa commonly associated with peri-
odontal disease [18, 30, 31]. These include OTUs asso-
ciated with Pophyromonas assaccharolytica (OTU105),
Fusobacterium nucleatum (OTU264), Parvimonas micra
(OTU281), Peptostreptococcus stomatis (OTU310),
Gemella spp. (OTU356), and an unclassified Prevotella
(OTU57) (Additional file 3: Figure S3C). The ROC curve
for the model had an AUC of 0.847, which was similar to
AUCs reported for other microbiota-based models for
CRC [17, 18]. The AUC of this model was significantly
better than a random assignment (p <0.001), but was
significantly lower than that of FIT (FIT AUC:0.929,
p = 0.005, Fig. 1c). As with the adenoma versus normal
model, we confirmed the OOB AUC with leave-one-out
cross validation and 100 iterations of 10-fold cross valid-
ation (Additional file 2: Figure S2B). At the manufacturer’s
recommended cutoff of 100 ng/mL, FIT detected 75.0 %
of cancers with a specificity of 97.1 %. At the same
specificity, the microbiota model detected 51.7 % of
cancers. Although more cancers were detected by FIT, the
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microbiota model was able to detect 33.3 % of cancers
missed by FIT (Fig. 1d).

MMT for colonic lesions
Many of the adenomas and some of the carcinomas
were detected by the microbiota models, but not FIT,
suggesting that the two screening methods could com-
plement each other if combined into a single test. Based
on these observations, we developed a random forest
model using both the microbiota and FIT that would
differentiate normal individuals from those with any type
of colonic lesion (i.e. adenoma or carcinoma). The opti-
mal model, referred to as the MMT, used the relative
abundances of 23 OTUs and the concentration of
hemoglobin as determined by FIT. Of those OTUs, 16
were members of the Firmicutes phylum, including three

from the Ruminococcaceae family and 10 from the
Lachnospiraceae family (Additional file 4: Figure S4).
Three OTUs were associated with the genus Bacteroides.
The remaining OTUs were associated with Porphyromo-
nas, Parabacteroides, Collinsella, and Enterobacteriaceae.
The OTU associated with Porphyromonas was most
closely related to Porphyromonas asaccharolytica,
which has been previously shown to be predictive of CRC
[17, 18, 32]. Interestingly the majority of OTUs used in
the model, especially the Lachnospiraceae, were enriched
in normal patients (Additional file 4: Figure S4), suggest-
ing that a loss of beneficial organisms in addition to the
emergence of pathogens may be indicative of CRC devel-
opment. As with the previous random forest models we
performed leave-one-out cross validation and 100 itera-
tions of 10-fold cross-validation and found no difference

Fig. 1 Microbiota-based models can complement FIT. a, c ROC curves for distinguishing healthy patients from those with adenoma (a) or cancer
(c) based on FIT or a microbiota-based random forest model. Open circles show the sensitivity and specifity of FIT with a 100 ng/mL cutoff. Black
points show the sensitivity and specificity of the microbiota-based models at the same specificity as FIT. b, d Results of FIT and a microbiota-
based model for each adenoma (b) or cancer (d) sample. Dotted lines represent the cutoffs for each test. Points are shaded based on whether the
lesion was detected by both tests (black), one of the two tests (gray), or neither test (white)
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in AUC compared to the OOB estimates (Additional file
5: Figure S5).

Comparing MMT to FIT
To determine whether microbiota sequence data could
be used to complement FIT, we compared the perform-
ance of the MMT to FIT. For differentiating any lesions
from normal, the AUC for the MMT was significantly
higher than FIT (MMT AUC: 0.829, FIT AUC: 0.749,
p <0.001, Fig. 2a). Subdividing the lesions, detecting aden-
omas by the MMT (AUC: 0.755) was significantly better
than FIT (AUC: 0.639, p <0.001), but not for differentiat-
ing cancer from normal (MMT AUC: 0.952, FIT AUC:
0.929, p = 0.09). To generate a categorical prediction from
the MMT, we determined the model’s optimal threshold
for detecting cancer (0.57 probability of a lesion) using
Youden’s J statisitc [26]. Samples scoring above this cutoff
were classified as lesions, and those below the cutoff were
classified as normal. We then compared the sensitivity
and specificity of the MMT to those of FIT using a thresh-
old of 100 ng/mL of hemoglobin. At these cutoffs, the
MMT detected 91.7 % of cancers and 45.5 % of adenomas
compared to 75.0 % and 15.7 % for FIT (Table 1, Fig. 2b,
c). When adenomas and cancers were pooled together, the
MMT detected 62.9 % of lesions, while FIT only detected
38.1 %. However, the increased sensitivity of the MMT
was accompanied by a decrease in specificity (90.1 %)
compared to FIT (97.1 %).

To better understand the relationship between the
MMT and FIT, we compared the results of the two tests

for each sample (Fig. 3a). All but one of the samples that
tested positive by FIT also tested positive by the MMT.
However, the MMT was able to detect 70.0 % of cancers
and 37.7 % of adenomas that FIT had failed to detect,
while maintaining a specificity of 92.8 % (Fig. 3b). This
result demonstrated that incorporation of data from a
participant’s microbiota could complement FIT to im-
prove its sensitivity.

To make a fairer comparison of the sensitivities of
these two tests, we reduced the cutoff for FIT to 7 ng/
mL to match the 90.1 % specificity of the MMT. At the
lower cutoff for FIT there was no significant difference
in sensitivity for cancer between the two tests (p = 0.2),
but the MMT remained significantly more sensitive for
detecting adenomas (p = 0.02) and all lesions grouped
together (p = 0.04, Fig. 4).

The purpose of screening is to identify asymptomatic
individuals with early stage disease (i.e. true positives).
Therefore, we estimated the number of true positives
captured through FIT and MMT in the recommended
screening population in the United States (adults aged
50–75 years). The prevalence of lesions in an average-
risk population was obtained through a previously pub-
lished meta-analysis [33]. Based on sensitivities of FIT
and MMT in our dataset, we estimate that MMT would
detect approximately 40 thousand additional cancers, 1.3
million additional advanced adenomas, and 5.1 million
additional non-advanced adenomas compared to using
FIT (Table 2). Thus the improved sensitivity of the
MMT would increase the total number of true positives

Fig. 2 Comparing MMT to FIT. a ROC curves for the MMT (solid lines) or FIT (dashed lines) for distinguishing normal from any lesion (dark red),
normal from cancer (red), and normal from adenoma (orange). Filled dots show the sensitivity and specificity of the MMT at the optimal cutoff
(0.57). Open dots show the sensitivity and specificity of FIT at the 100 ng/mL cutoff. b, c Stripcharts showing the results for FIT (b) and the MMT
(c). Dashed lines show the cutoff for each test. Points with a FIT result of 0 are jittered to improve visibility
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identified in the recommended screening population of
the United States by approximately 6.5 million. However,
due to the lower specificity of MMT, it would also result
in an estimated 4.3 million additional false positives
compared to FIT. Further studies would be needed to
determine whether detection of 6.5 million additional le-
sions (mostly non-advanced adenomas) would outweigh
the added cost of 4.3 million additional false positives.

Effect of patient characteristics on model performance
Previous studies have identified differences in diagnostic
test performance for certain demographic groups or for
people taking certain medications [34–36]. Therefore we
tested whether the MMT performance differed between
patient populations. We found no difference in model
performance according to age, BMI, NSAID usage,
diabetes, smoking, or previous history of polyps (all
p > 0.05). However, the model was significantly better
at differentiating normal from lesion for women than for
men (p = 0.02; Additional file 6: Figure S6). For women
the model detected 63.6 % of lesions with a specificity of
94.6 %. For men the model detected 64.5 % of lesions with

a much lower specificity of 82 %. The MMT detected
51.2 % of adenomas in women and 44.9 % in men. Con-
sistent with the lower specificity for men, the MMT had a
higher sensitivity for cancer among men (98.5 %) than
women (82.7 %). The discrepancy appeared to be due to
differences in FIT results rather than differences in the
microbiome. After correcting for diagnosis, there was a
significant effect of sex on FIT result (p = 0.006, two-way
ANOVA), but not on the overall structure of the micro-
biome (PERMANOVA: p = 0.07). The lower specificity
and higher sensitivity for cancer among men is consistent
with previous observations that men have a higher posi-
tive rate for FIT [34, 35].

We have previously shown that incorporating patient
metadata into microbiome-based diagnostic models can
improve screening accuracy [17]. To test whether the
same was true for the MMT we generated a random for-
est model that combined patients’ age, BMI, sex, and
smoking status with the OTUs and FIT result from the
MMT. The AUC of the ROC curve for this model
(0.869) was not significantly different from that of the
MMT (AUC: 0.829, p = 0.11, Additional file 7: Figure S7).

Table 1 Sensitivities and specificities for FIT and MMT. The 95 % confidence intervals were computed with 2000 stratified bootstrap
replicates

Diagnosis Fecal immunochemical test Multitarget microbiota test

True positives Sensitivity (95 % CI) True positives Sensitivity (95 % CI)

Cancer n = 120 90 75.0 (67.5–82.5) 110 91.7 (86.7–95.8)

Adenoma n = 198 31 15.7 (10.6–20.7) 90 45.5 (38.4–52.5)

Any lesions n = 318 121 38.1 (32.7–43.4) 200 62.9 (57.2–67.9)

True negatives Specificity (95 % CI) True negatives Specificity (95 % CI)

Normal n = 172 167 97.1 (94.2–99.4) 155 90.1 (85.5–94.2)

Fig. 3 Relationship between FIT and MMT for each sample. a Scatterplot of MMT and FIT results for each sample. Dashed lines show the cutoff
for each test. Points with a FIT result of 0 are jittered to improve visibility. b Stripchart of MMT results for samples separated by binary FIT result
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When the model with patient metadata was set to the
same specificity as the MMT (90.1 %), it did not improve
the sensitivity for lesions (63.4 %) compared to MMT
(62.9 %, p = 0.9). Thus, contrary to our previous findings,
incorporation of patient metadata did not significantly
improve the MMT.

Discussion
We confirmed previous findings that the gut microbiota
can be used to differentiate healthy individuals from
those with colonic lesions. Although FIT was better at
detecting cancers than a model using only the micro-
biota, microbiota-based models detected a subset of le-
sions that were not detected by FIT. This suggested that
the two methods could complement each other. Based

on this observation we developed a cross-validated ran-
dom forest model that combined both FIT and the
microbiota to detect colonic lesions. The resulting MMT
had higher sensitivity than FIT for detecting lesions, es-
pecially adenomas. The MMT was also able to detect
the majority of cancers missed by FIT. However, the in-
creased sensitivity of MMT was accompanied by a de-
crease in specificity compared to FIT. With a false
positive rate more than three times higher than FIT
(9.9 % versus 2.9 %), an annual MMT would result in
more colonoscopies than using FIT as the primary
screening test. However, the higher sensitivity of the
MMT might make it possible to reduce the frequency of
screening, thereby offsetting the difference in the num-
ber of colonoscopies. Additional studies would be
needed identify the appropriate screening interval and to
determine whether the increased number of true posi-
tives identified by MMT justify the increased number of
false positives.

It was recently shown that when FIT was combined
with host-associated DNA biomarkers, the ability to de-
tect adenomas and carcinomas was significantly im-
proved over FIT alone [2]. The sensitivity of the host-
associated DNA screen was 92.3 % for cancer and
42.4 % for adenomas with a specificity of 89.8 %, all very
similar to what we observed with our MMT. Such re-
sults support the assertion that because of the large
interpersonal variation in markers for adenomas and
carcinomas, it is necessary to employ a panel of bio-
markers and to use a model that integrates the bio-
markers. The accuracy of our model may be further
improved by incorporating additional indicators such as

Fig. 4 Sensitivities for FIT and MMT for each stage of tumor development with matching specificities. The cutoff for FIT was reduced to 7 ng/mL
to match the specificity of the MMT. Sensitivities were compared using the method proposed by Pepe et al. (* = p <0.05, 1000
bootstrap replicates)

Table 2 Estimated number of true positives detected in average
risk population. Number of true positives identified through FIT
and MMT in the United States in adults aged 50–75 years, based
on published estimates of CRC prevalence. The sensitivities for FIT
(100 ng/mL cutoff) on advanced and non-advanced adenomas
were 19.3 % and 11.2 %, respectively

Condition Prevalence Number of
persons, aged
50–75 years,
with conditiona

True positives
identified
by FIT

True
positives
identified
by MMT

Cancer 0.3 % 241,483 181,112 221,359

Advanced
adenoma

5.7 % 4,588,174 883,960 2,188,854

Non-advanced
adenoma

17.7 % 14,247,488 1,600,841 6,723,534

aNumber of persons in the United States in 2010 aged 50–75 years
was 80,494,283
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host-associated biomarkers or those targeting specific
genes involved in the underlying mechanism of tumori-
genesis such as bacterial toxins [15, 16, 18]. More gener-
ally, predictive and diagnostic models for other diseases
with a microbial etiology may benefit from a similar ap-
proach. For example, we recently demonstrated the abil-
ity to detect Clostridium difficile infection based on the
composition of the microbiota [37]. Such models are
likely to be useful as microbiota sequencing gains trac-
tion as a tool for characterizing health.

Surprisingly most of the OTUs that work well for
identifying cancers, including Fusobacterium nucleatum
(OTU264), Peptostroptococcus stomatis (OTU310), and
Parvimonas micra (OTU281), were excluded from the
MMT. This is likely due to these OTUs being positively
correlated with FIT (all p <0.001, Spearman correlation),
meaning they add little information when used in com-
bination with FIT. Instead the MMT is enriched for
OTUs that help detect adenomas. Thus the MMT model
relies primarily on FIT for detecting cancer, and uses the
microbiota to help identify adenomas undetectable by
FIT alone. It is also interesting that most of the OTUs
used in the MMT were enriched in normal individuals,
suggesting that a loss of beneficial organisms in addition
to the emergence of pathogens may be important for
colorectal cancer development. Many of the OTUs that
were depleted in patients with lesions belonged to the
Ruminococcoaceae and Lachnospiraceae families, which
contain the predominant producers of butyrate, a
short-chain fatty acid with anti-inflammatory and anti-
tumorigenic properties [38–41]. Likewise Zeller et al.
observed a depletion of a potential butyrate-producing
Eubacterium spp. in patients with CRC [18]. Loss of
butyrate or other anti-inflammatory microbial metabo-
lites may contribute to CRC development. These possi-
bilities highlight the need for longitudinal studies to
better understand how changes to an individual’s
microbiome or the metabolic profile of the gut might
predispose them to CRC.

Like other groups, we noticed that the microbiota of CRC
patients contained higher levels of bacterial taxa traditionally
thought of as oral pathogens, including Fusobacterium,
Porphyromonas, Peptostreptococus, Gemella, Parvimonas,
and Prevotella. Periodontal pathogens have been shown
to promote the progression of oral cancer [42]. There-
fore it is possible that these taxa could influence the
progression of CRC by a similar mechanism. These
observations may warrant further investigation into a
potential link between periodontal disease and CRC.
Furthermore, since the structure of an individual’s oral
microbiome is correlated with that of the gut [43],
alterations in the oral community could potentially be a
proxy for ongoing or future changes to the gut
community.

Although it is exciting that the addition of the micro-
biota can improve the sensitivity of FIT, further valid-
ation is needed prior to clinical adoption. This
represents the largest cohort to date, but still only con-
sists of 490 patients. In contrast, the cohort used to val-
idate the Multitarget stool DNA test included 9989
participants. Development of a larger cohort will allow
us to apply the MMT to a separate validation set. It is
also unclear how sensitive the MMT is to variation in
sample preparation and processing. Many of the samples
included in the current study were collected 1–2 weeks
after the participants’ colonoscopy. A previous study
showed that the microbiome quickly returns to normal
following colonoscopy [20]. Likewise, we found no dif-
ference in the microbiome between samples collected
prior to or after colonoscopy (PERMANOVA: p = 0.45).
Regardless, we would have greater confidence in the pre-
dictive potential of the microbiota if all samples were
collected prior to colonoscopy. Despite these shortcom-
ings, the ability to improve the sensitivity of detecting
adenomas suggests that further methods development
and validation are warranted.

Conclusions
Our findings demonstrate the potential for combining
the analysis of a patient’s microbiota with conventional
stool-based tests to improve CRC detection. Using the
random forest algorithm it was possible to interpret FIT
results in the context of the microbiota. The MMT had
higher sensitivity for lesions, especially at early stages of
tumorigenesis. Moreover the model detected the major-
ity of cancers that FIT was unable to detect. The short-
coming of the MMT is its lower specificity. However,
the potential value of the MMT is its higher sensitivity,
which is the purpose of preventive screening – finding
lesions earlier so that cancer would be avoided.

Availability of data and materials
Raw fastq files and a MIMARKS file are available
through the NCBI Sequence Read Archive (SRP062005).
The exact data processing steps for going from the raw
sequence data to the final manuscript is available at
http://www.github.com/SchlossLab/Baxter_glne007Mo
deling_GenomeMed_2015.
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Additional file 1: Figure S1. Random forest feature selection for
detecting adenomas. (A) Change in AUC with varying number of
variables in the random forest model. The model with the highest AUC
contained 22 OTUs. (B) Importance of each OTU in the model as
measured by mean decrease accuracy when the OTU is removed from
the model. (C) Relative abundance of the most discriminatory OTUs in
adenoma and normal samples. (PDF 19 kb)
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Additional file 2: Figure S2. Cross-validation of OTU random forest
models. ROC curves for the (A) adenoma versus normal OTU model and
(B) cancer versus normal OTU model based on OOB estimates, leave-one-out
cross-validation, and 10-fold cross-validation. (PDF 13 kb)

Additional file 3: Figure S3. Random forest feature selection for
detecting cancers. (A) Change in AUC with varying number of variables
in the random forest model. The model with the highest AUC contained
34 OTUs. (B) Importance of each OTU in the model as measured by
mean decrease accuracy when the OTU is removed from the model.
(C) Relative abundance of the most discriminatory OTUs in cancer and
normal samples. (PDF 19 kb)

Additional file 4: Figure S4. Bacterial OTUs in MMT. (left) Importance
of each OTU used in the MMT as measured by the mean decrease in the
Gini index when the OTU is removed from the model. (right) Stripchart
of the relative abundances of each OTU in the MMT with black lines at
the medians. (PDF 76 kb)

Additional file 5: Figure S5. Cross-validation of MMT. ROC curves for
the MMT model based on OOB estimates, leave-one-out cross-validation,
and 10-fold cross-validation. (PDF 9 kb)

Additional file 6: Figure S6. MMT performance by sex. ROC curves
(left) and stripchart (right) of MMT results separated by sex. (PDF 12 kb)

Additional file 7: Figure S7. MMT with patient metadata. ROC curves
for distinguishing normal from lesion using FIT, the MMT, or the MMT
with metadata. (PDF 8 kb)
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