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ABSTRACT Assignment of 16S rRNA gene sequences to operational taxonomic units
(OTUs) is a computational bottleneck in the process of analyzing microbial commu-
nities. Although this has been an active area of research, it has been difficult to
overcome the time and memory demands while improving the quality of the
OTU assignments. Here, we developed a new OTU assignment algorithm that it-
eratively reassigns sequences to new OTUs to optimize the Matthews correlation
coefficient (MCC), a measure of the quality of OTU assignments. To assess the
new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA
gene sequences from two simulated and four natural communities. Using the
OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs
generated when we used the average neighbor and distance-based greedy cluster-
ing with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times
faster than the average neighbor algorithm and just as fast as distance-based greedy
clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms
showed that the time and memory required to perform the algorithm scaled qua-
dratically with the number of unique sequences in the data set. The significant im-
provement in the quality of the OTU assignments over previously existing methods
will significantly enhance downstream analysis by limiting the splitting of similar se-
quences into separate OTUs and merging of dissimilar sequences into the same
OTU. The development of the OptiClust algorithm represents a significant advance
that is likely to have numerous other applications.

IMPORTANCE The analysis of microbial communities from diverse environments us-
ing 16S rRNA gene sequencing has expanded our knowledge of the biogeography
of microorganisms. An important step in this analysis is the assignment of se-
quences into taxonomic groups based on their similarity to sequences in a database
or based on their similarity to each other, irrespective of a database. In this study,
we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks
to optimize a metric of assignment quality by shuffling sequences between taxo-
nomic groups. We found that OptiClust produces more robust assignments and
does so in a rapid and memory-efficient manner. This advance will allow for a more
robust analysis of microbial communities and the factors that shape them.
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Amplicon-based sequencing has provided incredible insights into Earth’s microbial
biodiversity (1, 2). It has become common for studies to include sequencing

millions of 16S rRNA gene sequences across hundreds of samples (3, 4). This is a
sequencing depth 3 to 4 orders of magnitude greater than was previously achieved
using Sanger sequencing (5, 6). The increased sequencing depth has revealed novel
taxonomic diversity that is not adequately represented in reference databases (1, 3).
However, the advance has forced reengineering of methods to overcome the rate- and
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memory-limiting steps in computational pipelines that process raw sequences through
the generation of tables containing the number of sequences in different taxa for each
sample (7–10). A critical component of these pipelines has been the assignment of
amplicon sequences to taxonomic units that are defined either based on similarity to
a reference or operationally based on the similarity of the sequences to each other
within the data set (11, 12).

A growing number of algorithms have been developed to cluster sequences into
operational taxonomic units (OTUs). These algorithms can be classified into three
general categories. The first category of algorithms has been termed closed reference
or phylotyping (13, 14). Sequences are compared to a reference collection and clus-
tered based on the reference sequences to which they are similar. This approach is fast;
however, the method struggles when a sequence is similar to multiple reference
sequences that may have different taxonomies and when it is not similar to sequences
in the reference (15). The second category of algorithms has been called de novo
because they assign sequences to OTUs without the use of a reference (14). These
include hierarchical algorithms such as nearest, furthest, and average neighbor (16) and
algorithms that employ heuristics such as abundance- or distance-based greedy clus-
tering (AGC or DGC, respectively) as implemented in USEARCH (17) or VSEARCH (18),
Sumaclust and OTUCLUST (19), and Swarm (20). De novo methods are agglomerative
and tend to be more computationally intense. It has proven difficult to know which
method generates the best assignments. A third category of algorithm is open-
reference clustering, which is a hybrid approach (3, 14). Here, sequences are assigned
to OTUs using closed-reference clustering, and sequences that are not within a thresh-
old of a reference sequence are then clustered using a de novo approach. This category
blends the strengths and weaknesses of the other method and adds the complication
that closed-reference and de novo clustering use different OTU definitions. These three
categories of algorithms take different approaches to handling large data sets to
minimize the time and memory requirements while attempting to assign sequences to
meaningful OTUs.

Several metrics have emerged for assessing the quality of OTU assignment algo-
rithms. These have included the time and memory required to run the algorithm (3,
20–22), agreement between OTU assignments and the sequences’ taxonomy (20,
22–32), sensitivity of an algorithm to stochastic processes (33), the number of OTUs
generated by the algorithm (23, 34), and the ability to regenerate the assignments
made by other algorithms (3, 35). Unfortunately, these methods fail to directly quantify
the quality of the OTU assignments. An algorithm may complete with minimal time and
memory requirements or generate an idealized number of OTUs, but the composition
of the OTUs could be incorrect. These metrics also tend to be subjective. For instance,
a method may appear to recapitulate the taxonomy of a synthetic community with
known taxonomic structure but do a poor job when applied to real communities with
poorly defined taxonomic structure or for sequences that are prone to misclassification.
As an alternative, we developed an approach to objectively benchmark the clustering
quality of OTU assignments (13, 15, 36). This approach counts the number of true
positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs) based
on the pairwise distances. Sequence pairs that are within the user-specified threshold
and are clustered together represent TPs, and those in different OTUs are FNs. Those
sequence pairs that have a distance larger than the threshold and are not clustered in
the same OTU are TNs, and those in the same OTU are FPs. These values can be
synthesized into a single correlation coefficient, the Matthews correlation coefficient
(MCC), which measures the correlation between observed and predicted classifications
and is robust to cases where there is an uneven distribution across the confusion matrix
(37). Consistently, the average neighbor algorithm was identified as among the best or
as the best algorithm. Other hierarchical algorithms, such as furthest and nearest
neighbor, which do not permit the formation of FPs or FNs, respectively, fared signif-
icantly worse. The distance-based greedy clustering as implemented in VSEARCH has
also performed well. The computational resources required to complete the average
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neighbor algorithm can be significant for large data sets, and so there is a need for an
algorithm that efficiently produces consistently high-quality OTU assignments.

These benchmarking efforts have assessed the quality of the clusters after the
completion of the algorithm. In the current study, we developed and benchmarked a
new de novo clustering algorithm that uses real-time calculation of the MCC to direct
the progress of the clustering. The result is the OptiClust algorithm, which produces
significantly better sequence assignments while making efficient use of computational
resources.

RESULTS
OptiClust algorithm. The OptiClust algorithm uses the pairs of sequences that are

within a desired threshold of each other (e.g., 0.03), a list of all sequence names in the
data set, and the metric that should be used to assess clustering quality. A detailed
description of the algorithm is provided for a toy data set in the supplemental material.
Briefly, the algorithm starts by placing each sequence either within its own OTU or into
a single OTU. The algorithm proceeds by interrogating each sequence and recalculating
the metric for the cases where the sequence stays in its current OTU, is moved to each
of the other OTUs, or is moved into a new OTU. The location that results in the best
clustering quality indicates whether the sequence should remain in its current OTU or
be moved to a different or new OTU. Each iteration consists of interrogating every
sequence in the data set. Although numerous options are available for optimizing the
clusters and for assessing the quality of the clusters within the mothur-based imple-
mentation of the algorithm (e.g., sensitivity, specificity, accuracy, F1 score, etc.), the
default metric for optimization and assessment is MCC because it includes all four
parameters from the confusion matrix (see Fig. S1 and Table S1 in the supplemental
material). The algorithm continues until the optimization metric stabilizes or until it
reaches a defined stopping criterion.

OptiClust-generated OTUs are more robust than those from other methods. To
evaluate the OptiClust algorithm and compare its performance to other algorithms, we
utilized six data sets including two synthetic communities and four previously pub-
lished large data sets generated from soil, marine, human, and murine samples
(Table 1). When we seeded the OptiClust algorithm with each sequence in a separate
OTU and ran the algorithm until complete convergence, the MCC values averaged 15.2
and 16.5% higher than the OTUs using average neighbor and distance-based greedy
clustering (DGC) with VSEARCH, respectively (Fig. 1; Table S1). The number of OTUs formed
by the various methods was negatively correlated with their MCC value (� � �0.47; P �

0.001). The OptiClust algorithm was considerably faster than the hierarchical algorithms
and somewhat slower than the heuristic-based algorithms. Across the six data sets, the
OptiClust algorithm was 94.6 times faster than average neighbor and just as fast as DGC
with VSEARCH. The human data set was a challenge for a number of the algorithms.
OTUCLUST and Sumaclust were unable to cluster the human data set in less than 50 h,
and the average neighbor algorithm required more than 45 GB of RAM. The USEARCH-
based methods were unable to cluster the human data using the 32-bit free version of

TABLE 1 Description of data sets used to evaluate the OptiClust algorithm and compare its performance to other algorithmsa

Data set (reference[s])
Read length
(nt)

No. of
samples

Total no. of
sequences

No. of unique
sequences No. of distances No. of OTUs

Soil (41) 150 18 948,243 143,677 11,775,167 40,216
Marine (42) 250 7 1,384,988 75,923 12,908,857 25,787
Mice (40) 250 360 2,825,495 32,447 6,988,306 2,658
Human (39) 250 489 20,951,841 121,281 38,544,315 11,648
Even (34, 36) NA NA 1,155,800 11,558 29,694 7,651
Staggered (34, 36) NA NA 1,156,550 11,558 29,694 7,653
aEach data set contains sequences from the V4 region of the 16S rRNA gene. The number of distances for each data set indicates those that were less than or equal
to 0.03. The number of OTUs was determined using the OptiClust algorithm. The even and staggered data sets were generated by extracting the V4 region from full-
length reference sequences, and the data sets from the natural communities were generated by sequencing the V4 region using an Illumina MiSeq with paired reads
of either 150 or 250 nt. NA, not applicable.
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the software that limits the amount of RAM to approximately 3.5 GB. These data
demonstrate that OptiClust generated significantly more robust OTU assignments than
existing methods across a diverse collection of data sets with performance that was
comparable to popular methods.

OptiClust stopping criteria. By default, the mothur-based implementation of the
algorithm stops when the optimization metric changes by less than 0.0001; however,
this can be altered by the user. This implementation also allows the user to stop the
algorithm if a maximum number of iterations is exceeded. By default, mothur uses a
maximum value of 100 iterations. The justification for allowing incomplete conver-
gence was based on the observation that numerous iterations are performed that
extend the time required to complete the clustering with minimal improvement in
clustering (Fig. S2). We evaluated the results of clustering to partial convergence (i.e.,
a change in the MCC value that was less than 0.0001) or until complete convergence
of the MCC value (i.e., until it did not change between iterations) when seeding the
algorithm with each sequence in a separate OTU (Fig. 1). The small difference in MCC
values between the output from partial and complete convergence resulted in a
difference in the median number of OTUs that ranged between 1.5 and 17.0 OTUs. This
represented a difference of less than 0.15%. Among the four natural data sets, between

FIG 1 Comparison of de novo clustering algorithms. Plot of MCC (A), number of OTUs (B), and execution times (C) for the comparison
of de novo clustering algorithms when applied to four natural and two synthetic data sets. The first three columns of each panel
contain the results of clustering the data sets: (i) seeding the algorithm with one sequence per OTU and allowing the algorithm to
proceed until the MCC value no longer changed, (ii) seeding the algorithm with one sequence per OTU and allowing the algorithm
to proceed until the MCC changed by less than 0.0001, and (iii) seeding the algorithm with all of the sequences in one OTU and allowing
the algorithm to proceed until the MCC value no longer changed. The human data set could not be clustered by the average neighbor,
Sumaclust, USEARCH, or OTUCLUST with less than 45 GB of RAM or 50 h of execution time. The median from 10 reorderings of the data
is presented for each method and data set. The range of observed values is indicated by the error bars, which are typically smaller than
the plotting symbol.
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3 and 6 iterations were needed to achieve partial convergence and between 8 and 12
iterations were needed to reach full convergence. The additional steps required be-
tween 1.4 and 1.7 times longer to complete the algorithm. These results suggest that
achieving full convergence of the optimization metric adds computational effort;
however, considering that full convergence took between 2 and 17 min, the extra effort
was relatively small. Although the mothur default setting is partial convergence, the
remainder of our analysis used complete convergence to be more conservative.

Effect of seeding OTUs on OptiClust performance. By default, the mothur imple-
mentation of the OptiClust algorithm starts with each sequence in a separate OTU. An
alternative approach is to start with all of the sequences in a single OTU. We found that
the MCC values for clusters generated when seeding OptiClust with the sequences as
a single OTU were between 0% and 11.5% lower than when seeding the algorithm with
sequences in separate OTUs (Fig. 1). Interestingly, with the exception of the human data
set (0.2% more OTUs), the number of OTUs was as much as 7.0% lower (mice) than
when the algorithm was seeded with sequences in separate OTUs. Finally, the time
required to cluster the data when the algorithm was seeded with a single OTU was
between 1.5 and 2.9 times longer than if sequences were seeded as separate OTUs. This
analysis demonstrates that seeding the algorithm with sequences as separate OTUs
resulted in the best OTU assignments in the shortest period of time.

OptiClust-generated OTUs are as stable as those from other algorithms. One
concern that many have with de novo clustering algorithms is that their output is
sensitive to the initial order of the sequences because each algorithm must break ties
where a sequence could be assigned to multiple OTUs. An additional concern specific
to the OptiClust algorithm is that it may stabilize at a local optimum. To evaluate these
concerns, we compared the results obtained using 10 randomizations of the order that
sequences were given to the algorithm. The median coefficient of variation across the
six data sets for MCC values obtained from the replicate clusterings using OptiClust was
0.1% (Fig. 1). We also measured the coefficient of variation for the number of OTUs
across the six data sets for each method. The median coefficient of variation for the
number of OTUs generated using OptiClust was 0.1%. Confirming our previous results
(15), all of the methods that we tested were stable to stochastic processes. Of the
methods that involved randomization, the coefficient of variation for MCC values was
considerably smaller with OptiClust than with the other methods, and the coefficient of
variation for the number of OTUs was comparable to the other methods. The variation
observed in clustering quality suggested that the algorithm does not appear to
converge to a locally optimum MCC value. More importantly, the random variation
does yield output of a similarly high quality.

Time and memory required to complete optimization-based clustering scales
efficiently. Although not as important as the quality of clustering, the amount of time
and memory required to assign sequences to OTUs is a legitimate concern. We
observed that the time required to complete the OptiClust algorithm (Fig. 1C) paral-
leled the number of pairwise distances that were smaller than 0.03 (Table 1). To further
evaluate how the speed and memory usage scaled with the number of sequences in
the data set, we measured the time required and maximum RAM usage to cluster 20,
40, 60, 80, and 100% of the unique sequences from each of the natural data sets using
the OptiClust algorithm (Fig. 2). Within each iteration of the algorithm, each sequence
is compared to every other sequence and each comparison requires a recalculation of
the confusion matrix. This would result in a worst-case algorithmic complexity on the
order of n3, where n is the number of unique sequences. Because the algorithm needs
to keep track of only the sequence pairs that are within the threshold of each other, it
is likely that the implementation of the algorithm is more efficient. To empirically
determine the algorithmic complexity, we fitted a power law function to the data in
Fig. 2A. We observed power coefficients between 1.7 and 2.5 for the marine and human
data sets, respectively. The algorithm requires storing a matrix that contains the pairs
of sequences that are close to each other as well as a matrix that indicates which
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sequences are clustered together. The memory required to store these matrices is on
the order of n2, where n is the number of unique sequences. In fact, when we fitted a
power law function to the data in Fig. 2B, the power coefficients were 1.9. Using the
four natural community data sets, doubling the number of sequences in a data set
would increase the time required to cluster the data by 4- to 8-fold and increase the
RAM required by 4-fold. It is possible that future improvements to the implementation
of the algorithm could improve this performance.

The cluster splitting heuristic generates OTUs that are as good as those
generated by the nonsplitting approach. We previously described a heuristic to
accelerate OTU assignments where sequences were first classified to taxonomic groups
and within each taxon sequences were assigned to OTUs using the average neighbor
clustering algorithm (13). This method is similar to open-reference clustering except
that in our approach all sequences are subjected to de novo clustering following
classification, whereas in open-reference clustering only those sequences that cannot
be classified are subjected to de novo clustering. Our cluster splitting approach accel-
erated the clustering and reduced the memory requirements because the number of
unique sequences was effectively reduced by splitting sequences across taxonomic
groups. Furthermore, because sequences in different taxonomic groups are assumed to
belong to different OTUs, they are independent, which permits parallelization and
additional reduction in computation time. Reduction in clustering quality is encoun-
tered in this approach if there are errors in classification or if two sequences within the
desired threshold belong to different taxonomic groups. It is expected that these errors
would increase as the taxonomic level goes from kingdom to genus. To characterize the
clustering quality, we classified each sequence at each taxonomic level and calculated
the MCC values using OptiClust, average neighbor, and DGC with VSEARCH when
splitting at each taxonomic level (Fig. 3). For each method, the MCC values decreased
as the taxonomic resolution increased; however, the decrease in MCC was not as large

FIG 2 OptiClust performance. Average execution time (A) and memory usage (B) required to cluster the
four natural data sets. The confidence intervals indicate the range between the minimum and maximum
values. The y axis is scaled by the square root to demonstrate the relationship between the time and
memory requirements relative to the number of unique sequences squared.
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as the difference between clustering methods. As the resolution of the taxonomic levels
increased, the clustering quality remained high, relative to clusters formed from the
entire data set (i.e., kingdom level). The MCC values when splitting the data sets at the
class and genus levels were within 98.0 and 93.0%, respectively, of the MCC values
obtained from the entire data set. These decreases in MCC value resulted in the
formation of as many as 4.7 and 22.5% more OTUs, respectively, than were observed
from the entire data set. These errors were due to the generation of additional false
negatives due to splitting similar sequences into different taxonomic groups. For the
data sets included in the current analysis, the use of the cluster splitting heuristic was
probably not worth the loss in clustering quality. However, as data sets become larger,
it may be necessary to use the heuristic to cluster the data into OTUs.

DISCUSSION

Myriad methods have been proposed for assigning 16S rRNA gene sequences to
OTUs. Each claims improved performance based on speed, memory usage, represen-
tation of taxonomic information, and number of OTUs. Each of these metrics is
subjective and does not actually indicate the quality of the clustering. This led us to
propose using the MCC as a metric for assessing the quality of clustering, post hoc. Here,
we described a new clustering method that seeks to optimize clustering based on an
objective criterion that measures clustering quality in real time. In the OptiClust
algorithm, clustering is driven by optimizing a metric that assesses whether any two

FIG 3 Effects of taxonomically splitting the data sets on clustering quality. The data sets were split at
each taxonomic level based on their classification using a naive Bayesian classifier and clustered using
average neighbor, VSEARCH-based DGC, and OptiClust.
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sequences should be grouped into the same OTU. The result is clusters that are
significantly more robust and is efficient in the time and memory required to cluster the
sequences into OTUs. This makes it more tractable to analyze large data sets without
sacrificing clustering quality, as was previously necessary using heuristic methods.

The cluster optimization procedure is dependent on the metric that is chosen for
optimization. We employed the MCC because it includes the four values from a
confusion matrix. Other algorithms, such as the furthest neighbor and nearest neighbor
algorithms, minimize the number of FPs and FNs, respectively; however, these suffer
because the numbers of FNs and FPs are not controlled, respectively (13, 16). Alterna-
tively, one could optimize based on the sensitivity, specificity, or accuracy, which is each
based on two values from the confusion matrix, or could optimize based on the F1
score, which is based on three values from the confusion matrix. Because these metrics
do not balance all four parameters equally, it is likely that one parameter will dominate
in the optimization procedure. For example, optimizing for sensitivity could lead to a
large number of FPs. A higher number of FPs increases the number of OTUs, while a
higher number of FNs collapses OTUs together. It is difficult to know which is worse
since community richness and diversity are linked to the number of OTUs. In addition,
increasing the number of FNs would overstate the differences between communities
while increasing the number of FPs would overstate their similarity. Therefore, it is
important to jointly minimize the number of FPs and FNs. With this in mind, we decided
to optimize utilizing the MCC. It is possible that other metrics that balance the four
parameters could be developed and employed for optimization of the clustering.

The OptiClust algorithm is relatively simple. For each sequence, it effectively asks
whether the MCC value will increase if the sequence is moved to a different OTU,
including creating a new OTU. If the value does not change, it remains in the current
OTU. The algorithm repeats until the MCC value stabilizes. Assuming that the algorithm
is seeded with each sequence in a separate OTU, it does not appear that the algorithm
converges to a local optimum. Furthermore, execution of the algorithm with different
random number generator seeds produces OTU assignments of consistently high
quality. Future improvements to the implementation of the algorithm could provide
optimization to further improve its speed and susceptibility to find a local optimum.
Users are encouraged to repeat the OTU assignment several times to confirm that they
have found the best OTU assignments.

Our previous MCC-based analysis of clustering algorithms indicated that the average
neighbor algorithm consistently produced the best OTU assignments, with the DGC-
based method using USEARCH also producing robust OTU assignments. The challenge
in using the average neighbor algorithm is that it requires a large amount of RAM and
is computationally demanding. This led to the development of a splitting approach that
divides the clustering across distinct taxonomic groups (13). The improved perfor-
mance provided by the OptiClust algorithm likely makes such splitting unnecessary for
most current data sets. We have demonstrated that although the OTU assignments
made at the genus level are still better than those of other methods, the quality is not
as good as that found without splitting. The loss of quality is likely due to misclassifi-
cation because of limitations in the clustering algorithms and reference databases. The
practical significance of such small differences in clustering quality remain to be
determined; however, based on the current analysis, it does appear that the number of
OTUs is artificially inflated. Regardless, the best clustering quality should be pursued
given the available computer resources.

The time and memory required to execute the OptiClust algorithm scaled propor-
tionally to the number of unique sequences raised to the second power. The power for
the time requirement is affected by the similarity of the sequences in the data set, with
data sets containing more-similar sequences having a higher power. Also, the number
of unique sequences is the basis for the amount of both time and memory required to
complete the algorithm. Both the similarity of sequences and the number of unique
sequences can be driven by the sequencing error, since any errors will increase the
number of unique sequences and these sequences will be closely related to the perfect
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sequence. This underscores the importance of reducing the noise in the sequence data
(7). If sequencing errors are not remediated and are relatively randomly distributed,
then it is likely that the algorithm will require an unnecessary amount of time and RAM
to complete.

The rapid expansion in sequencing capacity has demanded that the algorithms used
to assign 16S rRNA gene sequences to OTUs be efficient while maintaining robust
assignments. Although database-based approaches have been proposed to facilitate
this analysis, they are limited by their limited coverage of bacterial taxonomy and by
the inconsistent process used to name taxa. The ability to assign sequences to OTUs
using an algorithm that optimizes clustering by directly measuring quality will signif-
icantly enhance downstream analysis. The development of the OptiClust algorithm
represents a significant advance that is likely to have numerous other applications.

MATERIALS AND METHODS
Sequence data and processing steps. To evaluate the OptiClust and the other algorithms, we

created two synthetic sequence collections and four sequence collections generated from previously
published studies. The V4 region of the 16S rRNA gene was used from all data sets because it is a popular
region that can be fully sequenced with 2-fold coverage using the commonly used MiSeq sequencer
from Illumina (7). The method for generating the simulated data sets followed the approach used by
Kopylova et al. (34) and Schloss (36). Briefly, we randomly selected 10,000 unique V4 fragments from 16S
rRNA gene sequences that were unique from the SILVA nonredundant database (38). A community with
an even relative abundance profile was generated by specifying that each sequence had a frequency of
100 reads. A community with a staggered relative abundance profile was generated by specifying that
the abundance of each sequence was a randomly drawn integer sampled from a uniform distribution
between 1 and 200. Sequence collections collected from human feces (39), murine feces (40), soil (41),
and seawater (42) were used to characterize the algorithms’ performance with natural communities.
These sequence collections were all generated using paired 150- or 250-nucleotide (nt) reads of the V4
region. We reprocessed all of the reads using a common analysis pipeline that included quality
score-based error correction (7), alignment against a SILVA reference database (38, 43), screening for
chimeras using UCHIME (9), and classification using a naive Bayesian classifier with the RDP training set
requiring an 80% confidence score (10).

Implementation of clustering algorithms. In addition to the OptiClust algorithm, we evaluated 10
different de novo clustering algorithms. These included three hierarchical algorithms, average neighbor,
nearest neighbor, and furthest neighbor, which are implemented in mothur (v.1.39.0) (11). Seven
heuristic methods were also used, including abundance-based greedy clustering (AGC) and distance-
based greedy clustering (DGC) as implemented in USEARCH (v.6.1) (17) and VSEARCH (v.2.3.3) (18),
OTUCLUST (v.0.1) (19), and Sumaclust (v.1.0.20) and Swarm (v.2.1.9) (20). With the exception of Swarm,
each of these methods uses distance-based thresholds to report OTU assignments. We also evaluated the
ability of OptiClust to optimize to metrics other than MCC. These included accuracy, F1 score, negative
predictive value, positive predictive value, false discovery rate, sensitivity, specificity, the sum of TPs and
TNs, the sum of FPs and FNs, and the number of FNs, FPs, TNs, and TPs (see Fig. S1 and Table S1 in the
supplemental material).

Benchmarking. We evaluated the quality of the sequence clustering, the reproducibility of the
clustering, the speed of clustering, and the amount of memory required to complete the clustering. To
assess the quality of the clusters generated by each method, we counted the cells within a confusion
matrix that indicated how well the clusterings represented the distances between the pair of sequences
(13). Pairs of sequences that were in the same OTU and had a distance less than 3% were true positives
(TPs), those that were in different OTUs and had a distance greater than 3% were true negatives (TNs),
those that were in the same OTU and had a distance greater than 3% were false positives (FPs), and those
that were in different OTUs and had a distance less than 3% were false negatives (FNs). To synthesize the
matrix into a single metric, we used the Matthews correlation coefficient using the sens.spec command
in mothur using the following equation:

MCC �
TP � TN � FP � FN

��TP � FP��TP � FN��TN � FP��TN � FN�
To assess the reproducibility of the algorithms, we randomized the starting order of each sequence
collection 10 times and ran each algorithm on each randomized collection. We then measured the MCC
for each randomization and quantified their percent coefficient of variation (% CV; 100 times the ratio of
the standard deviation to the mean).

To assess how the memory and time requirements scaled with the number of sequences included in
each sequence collection, we randomly subsampled 20, 40, 60, or 80% of the unique sequences in each
collection. We obtained 10 subsamples at each depth for each data set and ran each collection (n � 50 �
5 sequencing depths � 10 replicates) through each of the algorithms. We used the timeout script to
quantify the maximum RAM used and the amount of time required to process each sequence collection
(https://github.com/pshved/timeout). We limited each algorithm to 45 GB of RAM and 50 h using a single
processor.
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Data and code availability. The workflow utilized commands in GNU make (v.3.81), GNU bash
(v.4.1.2), mothur (v.1.39.0) (11), and R (v.3.3.2) (44). Within R, we utilized the wesanderson (v.0.3.2) (45),
dplyr (v.0.5.0) (46), tidyr (v.0.6.0) (47), cowplot (v.0.6.3) (48), and ggplot2 (v.2.2.0.9000) (49) packages. A
reproducible version of the manuscript and analysis is available at https://github.com/SchlossLab/
Westcott_OptiClust_mSphere_2017.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphereDirect.00073-17.
TEXT S1, PDF file, 1.6 MB.
FIGURE S1, EPS file, 0.8 MB.
FIGURE S2, EPS file, 0.3 MB.
TABLE S1, PDF file, 0.02 MB.
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