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ABSTRACT Human viruses (those that infect human cells) have been associated
with many cancers, largely due to their mutagenic and functionally manipulative
abilities. Despite this, cancer microbiome studies have focused almost exclusively on
bacteria instead of viruses. We began evaluating the cancer virome by focusing on
colorectal cancer, a primary cause of morbidity and mortality throughout the world
and a cancer linked to altered colonic bacterial community compositions but with
an unknown association with the gut virome. We used 16S rRNA gene, whole shot-
gun metagenomic, and purified virus metagenomic sequencing of stool to evaluate
the differences in human colorectal cancer virus and bacterial community composi-
tion. Through random forest modeling, we identified differences in the healthy and
colorectal cancer viromes. The cancer-associated virome consisted primarily of tem-
perate bacteriophages that were also predicted to be bacterium-virus community
network hubs. These results provide foundational evidence that bacteriophage com-
munities are associated with colorectal cancer and potentially impact cancer pro-
gression by altering the bacterial host communities.

IMPORTANCE Colorectal cancer is a leading cause of cancer-related death in the
United States and worldwide. Its risk and severity have been linked to colonic bacte-
rial community composition. Although human-specific viruses have been linked to
other cancers and diseases, little is known about colorectal cancer virus communi-
ties. We addressed this knowledge gap by identifying differences in colonic virus
communities in the stool of colorectal cancer patients and how they compared to
bacterial community differences. The results suggested an indirect role for the vi-
rome in impacting colorectal cancer by modulating the associated bacterial commu-
nity. These findings both support the idea of a biological role for viruses in colorec-
tal cancer and provide a new understanding of basic colorectal cancer etiology.

KEYWORDS bacteriophage, colorectal cancer, diagnostic, microbial ecology,
microbiome, microbiota, random forest, virome

The human gut virome is the community of all viruses found in the gut, including
bacteriophages (viruses that infect only bacteria), eukaryotic viruses (viruses that

infect only eukaryotic cells), and human-specific viruses (viruses that infect only human
cells). Due to their mutagenic abilities and propensity for functional manipulation,
human viruses are strongly associated with and in many cases cause cancer (1–4).
Because bacteriophages are crucial for bacterial community stability and composition
(5–7) and because members of those bacterial communities have been implicated as
oncogenic agents (8–11), bacteriophages have the potential to indirectly impact cancer
as well. The gut virome, therefore, has the potential to be associated with and,
potentially, to impact human cancer. Altered human virome composition and diversity
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have already been identified in various diseases, including periodontal disease (12), HIV
(13), cystic fibrosis (14), disease resulting from antibiotic exposure (15, 16), urinary tract
infections (17), and inflammatory bowel disease (18). The strong association of bacterial
communities with colorectal cancer (CRC), the previous identification of human-specific
viruses that cause cancer, and the precedent for the virome to impact other human
diseases suggest that colorectal cancer may be associated with altered virus commu-
nities.

Colorectal cancer is the second leading cause of cancer-related deaths in the United
States (19). The U.S. National Cancer Institute estimates that over 1.5 million Americans
were diagnosed with colorectal cancer in 2016 and that over 500,000 Americans died
from the disease (19). Growing evidence suggests that an important component of
colorectal cancer etiology may be perturbations in the colonic bacterial community (8,
10, 11, 20, 21). Work in this area has led to a proposed disease model in which bacteria
colonize the colon, develop biofilms, promote inflammation, and enter an oncogenic
synergy with the cancerous human cells (22). This association also has allowed re-
searchers to leverage bacterial community signatures as biomarkers to enable accurate,
noninvasive colorectal cancer detection from stool (8, 23, 24). While an understanding
of colorectal cancer bacterial communities has proven fruitful both for disease classi-
fication and for identification of the underlying disease etiology, bacteria represent only
a subset of the colon microbiome. Viruses are another important component of the
colon microbial community and have yet to be studied in the context of colorectal
cancer. We evaluated disruptions in virus and bacterial community composition in a
human cohort whose stool was sampled at the three relevant stages of cancer
development: healthy, adenomatous, and cancerous.

Colorectal cancer progresses in a stepwise process that begins when healthy tissue
develops into a precancerous polyp (i.e., adenoma) in the large intestine (25). If not
removed, the adenoma may develop into a cancerous lesion that can invade and
metastasize, leading to severe illness and death. Progression to cancer can be pre-
vented when precancerous adenomas are detected and removed during routine
screening (26, 27). Survival for colorectal cancer patients may exceed 90% when the
lesions are detected early and removed (26). Thus, work that aims to facilitate early
detection and prevention of progression beyond early cancer stages has great potential
to inform therapeutic development.

Here we begin to address the knowledge gap with respect to whether virus
community composition is altered in colorectal cancer and, if it is, how such differences
might impact cancer progression and severity. We also aimed to evaluate the virome’s
potential for use as a diagnostic biomarker. The implications of this study are 3-fold.
First, this work supports the idea of a biological role for the virome in colorectal cancer
development and suggests that more than the bacterial members of the associated
microbial communities are involved in the process. Second, we present a supplemen-
tary virus-based approach for classification modeling of colorectal cancer using stool
samples. Third, we provide initial support for the idea of the importance of studying the
virome as a component of the microbiome ecological network, especially in cancer.

RESULTS
Sample collection and processing. Our study cohort consisted of stool samples

collected from 90 human subjects, 30 of whom had healthy colons, 30 of whom had
adenomas, and 30 of whom had carcinomas (Fig. 1). Half of each stool sample was used
to sequence the bacterial communities using both 16S rRNA gene and shotgun
sequencing techniques. The 16S rRNA gene sequencing was performed for a previous
study, and the sequences were reanalyzed using contemporary methods (8). The other
half of each stool sample was purified for virus-like particles (VLPs) before genomic DNA
extraction and shotgun metagenomic sequencing were performed. In the VLP purifi-
cation, cells were disrupted and extracellular DNA degraded (Fig. 1) to allow the
exclusive analysis of viral DNA within virus capsids. In this manner, the extracellular
virome of encapsulated viruses was targeted.

Hannigan et al. ®

November/December 2018 Volume 9 Issue 6 e02248-18 mbio.asm.org 2

 on N
ovem

ber 21, 2018 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

https://mbio.asm.org
http://mbio.asm.org/


Each extraction was performed with a blank buffer control to detect contaminants
from reagents or other unintentional sources. Only one of the nine controls contained
detectable DNA at a minimal concentration of 0.011 ng/�l, thus providing evidence of
the enrichment and purification of VLP genomic DNA over potential contaminants (see
Fig. S1A in the supplemental material). As expected, these controls yielded few se-
quences and were almost entirely removed in rarefying the data sets to a common
number of sequences (Fig. S1B). The high-quality phage and bacterial sequences were
assembled into highly covered contigs longer than 1 kb (Fig. S2). Because contigs
represent genome fragments, we further clustered related bacterial contigs into oper-
ational genomic units (OGUs) and viral contigs into operational viral units (OVUs)
(Fig. S2 and S3) to approximate organismal units.

Unaltered diversity in colorectal cancer. Microbiome and disease associations are
often described as being of an altered diversity (i.e., �dysbiotic�). Therefore, we first
evaluated the influence of colorectal cancer on virome OVU diversity. We evaluated
differences in communities between disease states using the Shannon diversity, rich-
ness, and Bray-Curtis metrics. We observed no significant alterations in either Shannon
diversity or richness in the diseased states compared to the healthy state (Fig. S4C and
D). There was no statistically significant clustering of the disease groups (analysis of
similarity [ANOSIM] P value � 0.6) (Fig. S4). Notably, there were significant differences
between the few blank controls that remained after rarefaction of the data and the
other study groups (ANOSIM P value � 0.001) (Fig. S5), further supporting the quality
of the sample set. In summary, standard alpha and beta diversity metrics were insuf-
ficient for capturing virus community differences between disease states (Fig. S4). This
is consistent with what had been observed when the same metrics were applied to 16S
rRNA gene sequences and metagenomic samples (8, 23, 24) and points to the need for
alternative approaches to detect the impact of colorectal cancer disease state on these
community structures.

Virome composition in colorectal cancer. In contrast to the diversity metrics
discussed above, OTU-based relative abundance profiles generated from 16S rRNA
gene sequences are effective for classifying stool samples as originating from individ-
uals with healthy, adenomatous, or cancerous colons (8, 23). By using classification
models instead of attempting to identify individual differentially abundant OTUs, those
and other studies have been successful in capturing complex community relationships
in which differences in taxonomic relative abundances are considered in the context of
other taxa. The exceptional performance of bacteria in these classification models
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FIG 1 Cohort and sample processing outline. Thirty subject stool samples were collected from healthy
subjects and adenoma (precancer) and carcinoma (cancer) patients. Stool samples were split into two
aliquots, the first of which was used for bacterial sequencing and the second of which was used for virus
sequencing. Bacterial sequencing was done using both 16S rRNA amplicon and whole-metagenomic
shotgun sequencing techniques. Virus samples were purified for viruses using filtration and a combina-
tion of chloroform (bacterial lysis) and DNase (exposed genomic DNA degradation). The resulting
encapsulated virus DNA was sequenced using whole-metagenomic shotgun sequencing.
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supports the idea of a role for bacterial functionality in colorectal cancer. We built on
these findings by evaluating the ability of virus community signatures to classify stool
samples and compared their performance to that of models built using bacterial
community signatures.

To identify the altered virus communities associated with colorectal cancer, we built
and tested random forest models for classifying stool samples as belonging to individ-
uals with either cancerous or healthy colons. We confirmed that our bacterial 16S rRNA
gene model replicated the performance of the original report, which used logit models
instead of random forest models (Fig. 2A) (8). We then compared the bacterial OTU
model to a model built using OVU relative abundances. The viral model performed as
well as the bacterial model (corrected P value � 0.4), with the viral and bacterial models
achieving mean area under the curve (AUC) values of 0.792 and 0.809, respectively
(Fig. 2A and B). To evaluate the ability of both bacterial and viral biomarkers to classify
samples, we built a combined model that used both bacterial and viral community
data. The combined model did not yield a statistically significant performance improve-
ment beyond the performance of the viral (corrected P value � 0.4) and bacterial
(corrected P value � 0.08) models, yielding an AUC of 0.768 (Fig. 2A and B).

We compared viral metagenomic methods to bacterial metagenomic methods by
building a viral model and a model using OGU relative abundance profiles from
bacterial metagenomic shotgun sequencing data. This bacterial model performed
worse than the other models (mean AUC � 0.474) (Fig. 2A and B). To determine the
cause of the discrepancy between the two bacterial sequencing methods, we at-
tempted to compare the approaches at a common sequencing depth. This revealed
that the bacterial 16S rRNA gene model was strongly driven by sparse and low-
abundance OTUs (Fig. S6). Removal of OTUs with a median abundance of zero resulted
in the removal of six OTUs and in a loss of model performance comparable to what was
observed in the metagenome-based model (Fig. S6A). The majority of these OTUs had
a relative abundance of lower than 1% across the samples (Fig. S6B). Although the
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FIG 2 Results from healthy versus cancer classification models built using virome signatures, bacterial 16S rRNA gene sequence signatures, whole-
metagenomic signatures, and a combination of virome and 16S rRNA gene sequence signatures. (A) An example receiver operating characteristic (ROC) curve
for visualizing the performance of each of the models for classifying stool as coming from either an individual with a cancerous colon or an individual with
a healthy colon. (B) Quantification of the AUC variation for each model and how it compared to each of the other models based on 15 iterations. A pairwise
Wilcoxon test with a false-discovery-rate multiple-hypothesis correction demonstrated that all models are significantly different from each other (P value �
0.01). (C) Mean decrease in accuracy (measurement of importance) of each operational taxonomic unit within the 16S rRNA gene classification model when
removed from the classification model. The mean is represented by a point, and bars represent standard errors. ID, identifier. (D) Mean decrease in accuracy
of each operational virus unit in the virome classification model. (E) Mean decrease in accuracy of each operational genomic unit and operational taxonomic
unit in the model using both 16S rRNA gene and virome features.
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features in the viral model also were of low abundance (Fig. S8F), the coverage was
sufficient for high model performance, likely because viral genomes are orders of
magnitude smaller than bacterial genomes.

The association between the bacterial and viral communities and colorectal cancer
was driven by a few important microbes. Fusobacterium was the primary driver of the
bacterial association with colorectal cancer, which is consistent with its previously
described oncogenic potential (Fig. 2C) (22). The virome signature also was driven by
a few OVUs, suggesting a role for these viruses in tumorigenesis (Fig. 2D). Note that
while these viruses were driving the signature, the magnitude of their importance and
the significance of those values were noticeably less than those corresponding to the
bacterial 16S signature, suggesting that, unlike what is observed in the bacteria, there
are many viruses that are associated with the cancerous state. The identified viruses
were bacteriophages, belonging to Siphoviridae and Myoviridae and to phage taxa that
could not be confidently identified beyond their broad phage identification (i.e.,
�unclassified�). Many of the important viruses that were confirmed to not have genomic
similarity to known bacterial genomes were unidentifiable (denoted �unknown�). This
is common in viromes across habitats; studies have reported that as much as 95% of
virus sequences belong to unknown genomic units (14, 28–30). When the bacterial and
viral community signatures were combined, both bacterial and viral organisms were
found to drive the community association with cancer (Fig. 2E).

Phage influence between CRC stages. Because previous work has identified shifts
in which bacteria were most important at different stages of colorectal cancer (8, 20,
22), we explored whether shifts in the relative influences of phages could be detected
between healthy, adenomatous, and cancerous colons. We evaluated community shifts
between the disease stage transitions (healthy to adenomatous and adenomatous to
cancerous) by building random forest models to compare only the diagnosis groups
present around the transitions. While bacterial OTU models performed equally well for
all disease class comparisons, the virome model performances differed (Fig. S7A and B).
Like bacteria (Fig. S7F to H), different virome members were important between the
healthy-to-adenomatous and adenomatous-to-cancerous stages (Fig. S7C to E).

After evaluating our ability to classify samples between two disease states, we
employed a three-class random forest model that included all disease states. The 16S
rRNA gene model yielded a mean AUC of 0.765 and outperformed the viral community
model, which yielded a mean AUC of 0.658 (P value � 0.001) (Fig. S8A to C). The
microbes important for the healthy versus cancer and healthy versus adenoma models
were also important for the three-class model (Fig. S8D and E). The most important
bacterium in the two-class and three-class models was the same Fusobacterium sp.
(OTU 4) (Fig. 2C; see also Fig. S8D). The most important viruses in the three-class model
were identified as bacteriophages (Fig. 2; see also Fig. S8E), but not all of the important
OVUs were of increased abundance in the diseased state (Fig. S8F).

Phage dominance in CRC virome. Differences in the colorectal cancer virome
could have been driven by eukaryotic (human) viruses or by bacteriophages. To better
understand the types of viruses that were important for colorectal cancer, we identified
the virome OVUs as being similar to either eukaryotic viruses or bacteriophages. The
most important viruses in the classification model were identified as bacteriophages
(Fig. S8). Overall, we were able to identify 78.8% of the OVUs as known viruses, and
93.8% of those viral OVUs aligned to bacteriophage reference genomes. Note that this
could have been influenced by our methodological biases against enveloped viruses
(more common among eukaryotic viruses than bacteriophage), due to the use of
chloroform and DNase treatment for purification.

We evaluated whether the phages in the community were primarily lytic (i.e.,
obligately lysed their hosts after replication) or temperate (i.e., able to integrate into
their host’s genome to form a lysogen and subsequently transition to a lytic mode). We
accomplished this by identifying the following three markers for temperate phages in
the OVU representative sequences: (i) presence of phage integrase genes; (ii) presence
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of known prophage genes, according to the ACLAME (A CLAssification of Mobile
genetic Elements) database; and (iii) nucleotide similarity to regions of bacterial ge-
nomes (29, 31, 32). We found that the majority of the phages were temperate and that
the overall fraction of temperate phages remained consistent throughout the healthy,
adenomatous, and cancerous stages (Fig. 3). These findings were consistent with
previous reports suggesting that the gut virome is primarily composed of temperate
phages (13, 18, 31, 33).

Community context of influential phages. Because the link between colorectal
cancer and the virome was driven by bacteriophages (rather than by nonbacterial
viruses), we tested the potential hypothesis that the virome signal was a mere reflection
of the bacterial signal and was thus highly correlated with the bacterial signal. If this
hypothesis were true, we would expect a correlation between the relative abundances
of influential bacterial OTUs and virome OVUs. Instead, we observed a strikingly low
correlation between bacterial and viral relative abundances (Fig. 4A and C). Overall,
there was an absence of correlation between the most influential OVUs and bacterial
OTUs (Fig. 4B). This evidence supported our null hypothesis that the influential viral
OVUs did not primarily represent reflections of the presence of influential bacteria.

Given these findings, we posited that the most influential phages were acting by
infecting a wide range of bacteria in the overall community instead of just the
influential bacteria. In other words, we hypothesized that the influential bacteriophages
were community hubs (i.e., central members) within the bacterium and phage inter-
active network. We investigated the potential host ranges of all phage OVUs using a
previously developed random forest model that relies on sequence features to predict
which phages infect which bacteria in the community (Fig. 5A) (34). The predicted
interactions were then used to identify phage community hubs. We calculated the
alpha centrality (i.e., the measure of importance in the ecological network) of the
connection of the OVU of each phage to the rest of the network. The phages with high
centrality values were defined as community hubs. Next, the centrality of each OVU was
compared to its importance in the colorectal cancer classification model. Phage OVU
centrality was significantly and positively correlated with importance to the disease
model (P value � 0.004, R � 0.176), suggesting that the phages that were important in
driving colorectal cancer also were more likely to be community hubs (Fig. 5B).
Together, these findings supported our hypothesis that the influential phages were
hubs within their microbial communities and had broad host ranges.
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FIG 3 Lysogenic phage relative abundance in disease states. Phage OVUs were predicted to be either
lytic or lysogenic, and the relative abundances of lysogenic phages were quantified and are represented
as a box plot. None of the data from the disease groups were statistically significant.
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DISCUSSION

Because of their propensity for mutagenesis and capacity for modulating their host
functionality, many human viruses are oncogenic (1–4). Some bacteria also have
oncogenic properties, suggesting that bacteriophages, representing a component of
the human virome in addition to human-specific viruses, may play an indirect role in
promoting carcinogenesis by influencing bacterial community composition and dy-
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FIG 5 Community network analysis utilizing predicted interactions between bacterial and phage operational genomic units. (A)
Visualization of the community network for our colorectal cancer cohort. (B) Scatter plot illustrating the correlation between
importance (mean decrease in accuracy) and the degree of centrality for each OVU. A linear regression line was fitted to illustrate
the correlations (blue) found to be statistically significantly and weakly correlated (P value � 0.00409, R � 0.176).

The Colorectal Cancer Virome ®

November/December 2018 Volume 9 Issue 6 e02248-18 mbio.asm.org 7

 on N
ovem

ber 21, 2018 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

https://mbio.asm.org
http://mbio.asm.org/


namics (8–10). Despite their carcinogenic potential and the strong association between
bacteria and colorectal cancer, a link between virus colorectal communities and colo-
rectal cancer has yet to be evaluated. Here we show that, like colonic bacterial
communities, the colon virome was altered in patients with colorectal cancer relative to
those with healthy colons. Our findings support a working hypothesis for oncogenesis
by phage-modulated bacterial community composition.

On the basis of our findings, we have developed a conceptual model to be tested
in our future studies aimed at elucidating the role that the colonic virome plays in
colorectal cancer (Fig. 6A). We found that basic diversity metrics of alpha diversity
(richness and Shannon diversity) and beta diversity (Bray-Curtis dissimilarity) were
insufficient for identifying virome community differences between healthy and cancer-
ous states. By implementing a machine learning approach (random forest classification)
to leverage inherent, complex patterns not detected by diversity measures, we were
able to detect strong associations between the colon virus community composition
and colorectal cancer. The double-stranded DNA (dsDNA) virome of colorectal cancer
was composed primarily of bacteriophages. These phage communities were not
exclusively predators of the most influential bacteria, as demonstrated by the lack
of correlation between the abundances of the bacterial and phage populations.
Instead, we identified influential phages as being community hubs, suggesting that
phages influence cancer by altering the greater bacterial community instead of
directly modulating the influential bacteria. Our previous work has shown that
modifying colon bacterial communities alters colorectal cancer progression and
tumor burden in mice (10, 20). This provides a precedent for the idea of phages
indirectly influencing colorectal cancer progression by altering the bacterial com-
munity composition. Overall, our data support a model in which the bacteriophage
community modulates the bacterial community and, through those interactions,
indirectly influences the bacteria driving colorectal cancer progression (Fig. 6A).
Although our evidence suggested that phages indirectly influenced colorectal
cancer development, we were not able to rule out a possible role of phages in direct
interactions with the human host (35, 36).

In addition to modeling the potential connections between virus communities,
bacterial communities, and colorectal cancer, we also used our data and existing
knowledge of phage biology to develop a working hypothesis regarding the mecha-
nisms by which this may occur. This was done by incorporating our findings into a
current model for colorectal cancer development (Fig. 6B) (22), although it is important
that there are also many other alternative hypotheses by which the system could be
operating. We hypothesize that the process begins with broadly infectious phages in
the colon lysing, and thereby disrupting, the existing bacterial communities. This shift
opens novel niche space that enables opportunistic bacteria (such as Fusobacterium
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FIG 6 Final working hypothesis from this study. These panels summarize our thoughts on our results and represent interesting future directions that we predict
will build on the presented work. (A) Basic model illustrating the connections between the virome, bacterial communities, and colorectal cancer. (B) Working
hypothesis of how the bacteriophage community is associated with colorectal cancer and the associated bacterial community. ROS, reactive oxygen species.
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nucleatum) to colonize. Once the initial influential founder bacteria establish them-
selves in the epithelium, secondary opportunistic bacteria are able to adhere to the
founders, colonize, and establish a biofilm. Phages may play a role in biofilm dispersal
and growth by lysing bacteria within the biofilm, a process important for effective
biofilm growth (37). The oncogenic bacteria may then be able to transform the
epithelial cells and disrupt tight junctions to infiltrate the epithelium, thereby
initiating an inflammatory immune response. As the adenomatous polyps devel-
oped and progressed toward carcinogenesis, we observed a shift in the phages and
bacteria whose relative abundances were most influential. As the bacteria enter
their state of oncogenic synergy with the epithelium, we conjecture that the phages
continue mediating biofilm dispersal. This process would thereby support the
colonized oncogenic bacteria by lysing competing cells and releasing nutrients to
other bacteria in the form of cellular lysates. In addition to highlighting the likely
mechanisms by which the colorectal cancer virome is interacting with the bacterial
communities, this model will guide future research investigations of the role that
the virome plays in colorectal cancer.

Our working hypothesis represents a conceptualization of areas for the future work
that will be required for characterization of the colorectal cancer microbiome at the
functional, mechanistic level. There are many different ways in which this system may
operate, and our working hypothesis represents one of those ways. For example, it
is possible that the bacterial communities cause a change in the virome instead of
the virome altering the bacterial communities. To better understand this system,
future studies will include larger-cohort human studies, further in vitro and in vivo
mechanistic experimentation, and attempts at community studies using absolute
abundance values instead of relative abundance, which would allow more-accurate
community dynamic modeling. Overall, this report provides a conceptual founda-
tion to direct future characterization of the colorectal cancer microbiome at the
functional, mechanistic level.

In addition to the diagnostic ramifications of understanding the colorectal cancer
microbiome, our findings suggest that viruses, while understudied and currently un-
derappreciated in the human microbiome, are likely important contributors to human
disease. Studies of viral community dynamics have the potential to provide an abun-
dance of information to supplement data from bacterial communities. Evidence has
suggested that the virome is a component that is crucial to the microbiome and that
bacteriophages are important players. Bacteriophage and bacterial communities can-
not maintain stability and coevolution without one another (6, 38). Not only is the
human virome an important element to consider in human health and disease (12–18),
but our findings support the concept that it is likely to have a significant impact on
cancer etiology and progression.

MATERIALS AND METHODS
Study design and patient sampling. This study was approved by the University of Michigan

Institutional Review Board, and all subjects provided informed consent. The design of and sampling
method used for this sample set have been reported previously (8). Briefly, whole evacuated stool was
collected from patients who were 18 years of age or older, able to provide informed consent, had had
colonoscopy and histologically confirmed colonic disease status, had not had surgery, had not had
chemotherapy or radiation, and were free of known comorbidities, including HIV, chronic viral hepatitis,
hereditary nonpolyposis colorectal cancer (HNPCC), familial adenomatous polyposis (FAP), and inflam-
matory bowel disease. Healthy subjects entered the clinic for the study and did not present as a result
of comorbities. Samples were collected from four geographic locations: Toronto (Ontario, Canada),
Boston (MA, USA), Houston (TX, USA), and Ann Arbor (MI, USA). Ninety patients were recruited to the
study, thirty of whom were designated healthy, thirty with detected adenomas, and thirty with detected
carcinomas.

16S rRNA gene sequence data acquisition and processing. The 16S rRNA gene sequences
associated with this study were previously reported (8). Sequence (fastq) and metadata files were
downloaded from the following site: http://www.mothur.org/MicrobiomeBiomarkerCRC.

The 16S rRNA gene sequences were analyzed as described previously, relying on the mothur software
package (v1.37.0) (39, 40). Briefly, the sequences were dereplicated, aligned to the SILVA database (41),
screened for chimeras using UCHIME (42), and binned into operational taxonomic units (OTUs) using a
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97% similarity threshold. Abundances were normalized for uneven sequencing depth by randomly
subsampling to 10,000 sequences, as previously reported (23).

Whole-metagenomic-library preparation and sequencing. DNA was extracted from stool samples
using a PowerSoil HTP 96-well soil DNA isolation kit (Mo Bio Laboratories) and an EPMotion 5075
pipetting system. Purified DNA was used to prepare a shotgun sequencing library using an Illumina
Nextera XT library preparation kit according to the standard kit protocol, including 12 cycles of
limited-cycle PCR. The tagmentation time was increased from 5 min to 10 min to improve the DNA
fragment length distribution. The library was sequenced using one lane of an Illumina HiSeq 4000
platform and yielded 125-bp paired-end reads.

Virus metagenomic library preparation and sequencing. Genomic DNA was extracted from
purified virus-like particles (VLPs) from stool samples, using a modified version of a previously published
protocol (29, 31, 43, 44). Briefly, an aliquot of stool (�0.1 g) was resuspended in SM buffer (Crystalgen;
catalog no. 221-179) and subjected to vortex mixing to facilitate resuspension. The resuspended stool
was centrifuged to remove major particulate debris and then filtered through a 0.22-�m-pore-size filter
to remove smaller contaminants. The filtered supernatant was treated with chloroform for 10 min with
gentle shaking to lyse contaminating cells, including bacterial cells, human cells, fungal cells, etc. The
exposed genomic DNA from the lysed cells was degraded by treating the samples with 5 U of DNase for
1 h at 37°C. DNase was deactivated by incubating the sample at 75°C for 10 min. The DNA was extracted
from the purified virus-like particles (VLPs) using a Wizard PCR purification preparation kit (Promega).
Disease classes were staggered across purification runs to prevent run variation from becoming a
confounding factor. As for the whole-community metagenomes, purified DNA was used to prepare a
shotgun sequencing library using an Illumina Nextera XT preparation kit according to the standard kit
protocol. The tagmentation time was increased from 5 min to 10 min to improve the DNA fragment
length distribution. The PCR cycle number was increased from 12 to 18 cycles to address the low biomass
of the samples as described previously (29). The library was sequenced using one lane of the Illumina
HiSeq 4000 platform and yielded 125-bp paired-end reads.

Metagenome quality control. The viral and whole-community metagenomic sample sets were
subjected to the same quality control procedures. The sequences were obtained as demultiplexed fastq
files and subjected to 5= and 3= adapter trimming using the CutAdapt program (v1.9.1) with an error rate
of 0.1 and an overlap of 10 (45). The FastX toolkit (v0.0.14) was used to quality trim the reads to a
minimum length of 75 bp and a minimum quality score of 30 (46). Reads mapping to the human genome
were removed using the DeconSeq algorithm (v0.4.3) and default parameters (47).

Contig assembly and abundance. Contigs were assembled using paired-end read files that were
purged of sequences without a corresponding pair (e.g., one read was removed due to low quality). The
Megahit program (v1.0.6) was used to assemble contigs for each sample using a minimum contig length
of 1,000 bp and iterating assemblies from 21-mers to 101-mers by 20 (48). Contigs from the virus and
whole-metagenomic sample sets were concatenated within their respective groups. The abundance of
the contigs within each sample was calculated by realigning sequences to the concatenated contig files
using the bowtie2 global aligner (v2.2.1) with a 25-bp seed length and an allowance of one mismatch
(49). Abundance was corrected for contig reference length and for the number of contigs included in
each operational genomic unit. Abundance was also corrected for uneven sampling depth by randomly
subsampling virome and whole metagenomes to depths of 1,000,000 and 500,000 reads, respectively,
and by removing samples with fewer total reads than the threshold. Thresholds were set for maximizing
sequence information while minimizing numbers of lost samples.

Operational genomic unit classification. In much the same manner that operational taxonomic
units (OTUs) are used as an operational definition of similar 16S rRNA gene sequences, we defined closely
related bacterial contig sequences as operational genomic units (OGUs) and virus contigs as operational
viral units (OVUs) in the absence of taxonomic identity. OGUs and OVUs were defined with the CONCOCT
algorithm (v0.4.0)m which bins related contigs by similar tetramer and coabundance profiles within
samples by the use of a variation-based Bayesian approach (50). CONCOCT was used with length
thresholds of 1,000 bp for virus contigs and 2,000 bp for bacteria.

Diversity. Alpha and beta diversity were calculated using the operational viral unit abundance
profiles for each sample. Sequences were rarefied to 100,000 sequences. Samples with less than the
cutoff value were removed from the analysis. Alpha diversity was calculated using the Shannon diversity
and richness metrics. Beta diversity was calculated using the Bray-Curtis metric (mean of 25 random
subsampling iterations), and the statistical significance of results of comparisons between the disease
state clusters was assessed using analysis of similarity (ANOSIM) with a post hoc multivariate Tukey test.
All diversity calculations were performed in R using the Vegan package (51).

Classification modeling. Classification modeling was performed in R using the Caret package (52).
OTU, OVU, and OGU abundance data were preprocessed by removing features (OTUs, OVUs, and OGUs)
that were present in fewer than thirty of the samples. This method both served as an effective feature
reduction technique and made the calculations computationally feasible. The binary random forest
model was trained using the area under the receiver operating characteristic curve (AUC), and the
three-class random forest model was trained using the mean AUC. Both were validated using 5-fold
nested cross-validation to prevent overfitting of the tuning parameters. Each training set step was
repeated five times, and the model was tuned for mtry values. For consistency and accurate comparisons
between feature groups (e.g., bacteria and viruses), the sample model parameters were used for each
group. The maximum AUC during training was recorded across 20 iterations of each group model to test
the significance of the differences between feature set performances. Statistical significance was eval-
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uated using a Wilcoxon test for comparisons between two categories or a pairwise Wilcoxon test with
Bonferroni-corrected P values for comparisons among three or more categories.

Taxonomic identification of operational genomic units. Operational viral units (OVUs) were
taxonomically identified using a reference database consisting of all bacteriophage and eukaryotic virus
genomes present in the European Nucleotide Archives. The longest contiguous sequence in each
operational genomic unit was used as a representative sequence for classification, as described previ-
ously (53). Each representative sequence was aligned to the reference genome database using the tblastx
alignment algorithm (v2.2.27) and a strict similarity threshold (E value � 1e�25) (54). The annotation
results were interpreted as “phage,” “eukaryotic virus,” or “unknown.” As an additional quality control
step, these OVUs were also aligned to the bacterial reference genome set from the European Nucleotide
Archives using the blastn algorithm (E value � 1e�25), and OVUs with similarity to bacterial genomes
and not viral genomes were removed from analysis.

Ecological network analysis and correlations. The ecological network of the bacterial and phage
operational genomic units was constructed and analyzed as previously described (34). Briefly, a random
forest model was used to predict interactions between bacterial and phage genomic units, and those
interactions were recorded in a graph database using neo4j graph databasing software (v2.3.1). The
degree of phage centrality was quantified using the alpha centrality metric in the igraph CRAN package.
A Spearman correlation analysis was performed for comparisons between model importance and phage
centrality scores.

Phage replication style identification. The phage OVU replication mode was predicted using
methods described previously (29, 31, 32). Briefly, we identified temperate OVUs as representative
contigs containing at least one of the following three genomic markers: (i) phage integrase genes, (ii)
prophage genes from the ACLAME database, and (iii) genomic similarity to bacterial reference genomes.
Integrase genes were identified in phage OVU representative contigs by aligning the contigs to a
reference database of all known phage integrase genes from the Uniprot database (Uniprot search term:
�organism:phage gene:int NOT putative�). Prophage genes were identified in the same way, using the
ACLAME set of reference prophage genes. In both cases, the blastx algorithm was used with an E value
threshold of 10e�5. Representative contigs that had a high genomic similarity to bacterial genomes
were also identified as potential lysogenic phages. To accomplish this, representative phage contigs were
aligned to the European Nucleotide Archive bacterial genome reference set using the blastn algorithm
(E value � 10e�25).

Data availability. All study sequences are available on the NCBI Sequence Read Archive under
BioProject identifier (ID) PRJNA389927. All associated source codes are available at the following GitHub
repository: https://github.com/SchlossLab/Hannigan_CRCVirome_mBio_2018.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02248-18.
FIG S1, EPS file, 0.02 MB.
FIG S2, EPS file, 0.9 MB.
FIG S3, TIF file, 1.4 MB.
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FIG S6, EPS file, 0.1 MB.
FIG S7, EPS file, 0.1 MB.
FIG S8, EPS file, 0.1 MB.

ACKNOWLEDGMENTS
We thank the Schloss laboratory members for their underlying contributions and the

Great Lakes-New England Early Detection Research Network for providing the fecal
samples that were used in this study. We also thank the participants in the study cohort.

G.D.H. was supported in part by the Molecular Mechanisms in Microbial Pathogen-
esis Training Program (T32 AI007528). P.D.S. was supported by funding from the
National Institutes of Health (P30DK034933). M.T.R. was supported by funding from the
National Institutes of Health (5U01CA86400). We declare no competing interests.

REFERENCES
1. Feng H, Shuda M, Chang Y, Moore PS. 2008. Clonal integration of a

polyomavirus in human Merkel cell carcinoma. Science 319:1096 –1100.
https://doi.org/10.1126/science.1152586.

2. Shuda M, Kwun HJ, Feng H, Chang Y, Moore PS. 2011. Human Merkel cell
polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1
translation regulator. J Clin Invest 121:3623–3634. https://doi.org/10
.1172/JCI46323.

3. Schiller JT, Castellsagué X, Garland SM. 2012. A review of clinical trials of
human papillomavirus prophylactic vaccines. Vaccine 30:F123–F138.
https://doi.org/10.1016/j.vaccine.2012.04.108.

4. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore
PS. 1994. Identification of herpesvirus-like DNA sequences in AIDS-
associated Kaposi’s sarcoma. Science 266:1865–1869. https://doi.org/10
.1126/science.7997879.

The Colorectal Cancer Virome ®

November/December 2018 Volume 9 Issue 6 e02248-18 mbio.asm.org 11

 on N
ovem

ber 21, 2018 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

https://github.com/SchlossLab/Hannigan_CRCVirome_mBio_2018
https://doi.org/10.1128/mBio.02248-18
https://doi.org/10.1128/mBio.02248-18
https://doi.org/10.1126/science.1152586
https://doi.org/10.1172/JCI46323
https://doi.org/10.1172/JCI46323
https://doi.org/10.1016/j.vaccine.2012.04.108
https://doi.org/10.1126/science.7997879
https://doi.org/10.1126/science.7997879
https://mbio.asm.org
http://mbio.asm.org/


5. Harcombe WR, Bull JJ. 2005. Impact of phages on two-species bacterial
communities. Appl Environ Microbiol 71:5254 –5259. https://doi.org/10
.1128/AEM.71.9.5254-5259.2005.

6. Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pašić L,
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