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ABSTRACT Efforts to catalog viral diversity in the gut microbiome have largely fo-
cused on DNA viruses, while RNA viruses remain understudied. To address this, we
screened assemblies of previously published mouse gut metatranscriptomes for the
presence of RNA viruses. We identified the coding-complete genomes of an astrovi-
rus and five mitovirus-like viruses.

he viral fraction of the mammalian gut microbiome forms a crucial component in

the relationship between microbes and their host. Bacterial viruses serve as an
important source of genetic diversity and population control for the microbiota, driving
its ecology and evolution (1). Mammalian viruses disrupt the gut environment through
infection and the response of the host immune system (2). Bacterial and mammalian
viruses make significant contributions to host health and disease. Current efforts to
describe the diversity of viruses present in the gut have focused on using shotgun
metagenomics to identify double-stranded DNA viruses, predominantly bacteriophages
and host pathogens (3). However, this method ignores viruses with RNA genomes,
which make up a considerable portion of environmental viromes (4).

We reanalyzed deeply sequenced metatranscriptome data produced by our labo-
ratory for the study of microbiome dynamics in a mouse model of Clostridioides difficile
infection (5, 6). Briefly, C57BL/6 mice from a breeding colony that we maintain at the
University of Michigan were treated with one of three different antibiotics (clindamycin,
streptomycin, or cefoperazone). After a 24-h recovery period, the mice were infected
with C. difficile strain 630. Germfree C57BL/6 mice were also monoassociated with C.
difficile strain 630. Cecal contents were removed from each animal 18 h postinfection
and frozen for RNA extraction and sequencing. RNA sequences from each sample were
trimmed of adapter sequences and low-quality bases using Trimmomatic v0.39, assem-
bled individually using rnaSPAdes v3.13.1 (7), and concatenated for dereplication,
which resulted in 70,779 contigs longer than 1kb. Contigs were screened for the
presence of RNA-dependent RNA polymerase (RdRP) coding sequences using BLAST
v2.9.0 against a database containing all viral RefSeq protein sequences annotated as
RdRP (screening database available online, as described below), with a maximum E
value of 10729, which resulted in 29 contigs. RdRP is conserved among almost all RNA
viruses without a DNA stage in genome replication. These contigs were then annotated
with InterProScan v5.39-77.0 (8, 9). We constructed phylogenetic trees from RdRP
protein sequences using IQ-TREE v1.6.12 (10).

Two classes of RNA viruses were assembled, with high coverage, with sequences
originating from most of the mouse treatment groups, including germfree mice. First,
a 6,811-base-long astrovirus genome (GC content, 56.6%) was obtained with 1,683.5-
fold coverage (Fig. 1A). The genome contained three predicted open reading frames,
encoding a capsid, RdRP, and a trypsin-like peptidase, and appeared to be closely
related to murine astroviruses in Astroviridae. Second, five distinct but closely related
RNA virus genomes (designated putative mitovirus JS1 through JS5), ranging in length
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FIG 1 Phylogenetic trees showing the relatives of the metatranscriptome-assembled genomes. Maximum likelihood phylogenetic trees constructed from RdRP
amino acid sequences for astroviruses (A) and narnaviruses (B) are shown. Node annotations represent IQ-TREE ultrafast bootstrap statistics; values less than
50% were excluded from the tree. Scale bars are indicated in red to the left of each tree. Highlight colors in panel B represent major Narnavirus taxa (orange,
ourmiaviruses; pink, ourmia-like mycoviruses; gray, narnaviruses; blue, mitoviruses; purple, murine mitovirus-like viruses; green, leviviruses).

from 2,309 to 2,447 bases, with 4.6- to 16,078.8-fold coverage and an average GC
content of 46.2%, belonged to a previously undescribed clade of Narnaviridae adjacent
to the mitoviruses (Fig. 1B). These RNA virus genomes will facilitate future studies of
RNA virus biology in the murine microbiome.

Data availability. The transcriptome sequencing (RNA-seq) data are available in the
NCBI Sequence Read Archive (SRA) database under accession numbers PRINA354635 (C.
difficile-infected mice) and PRINA415307 (mock-infected mice). The assembled ge-
nomes are available in GenBank under accession numbers MN780842 to MN780847. All
of the scripts and software used to perform this analysis are available online (https://
github.com/SchlossLab/Stough_Mouse_RNA_Virome_MRA_2019).
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