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ABSTRACT The severity of Clostridioides difficile infections (CDI) has increased over
the last few decades. Patient age, white blood cell count, and creatinine levels as well
as C. difficile ribotype and toxin genes have been associated with disease severity.
However, it is unclear whether specific members of the gut microbiota are associated
with variations in disease severity. The gut microbiota is known to interact with C. diffi-
cile during infection. Perturbations to the gut microbiota are necessary for C. difficile to
colonize the gut. The gut microbiota can inhibit C. difficile colonization through bile
acid metabolism, nutrient consumption, and bacteriocin production. Here, we sought
to demonstrate that members of the gut bacterial communities can also contribute to
disease severity. We derived diverse gut communities by colonizing germfree mice
with different human fecal communities. The mice were then infected with a single C.
difficile ribotype 027 clinical isolate, which resulted in moribundity and histopathologic
differences. The variation in severity was associated with the human fecal community
that the mice received. Generally, bacterial populations with pathogenic potential, such
as Enterococcus, Helicobacter, and Klebsiella, were associated with more-severe out-
comes. Bacterial groups associated with fiber degradation and bile acid metabolism,
such as Anaerotignum, Blautia, Lactonifactor, and Monoglobus, were associated with
less-severe outcomes. These data indicate that, in addition to the host and C. difficile
subtype, populations of gut bacteria can influence CDI disease severity.

IMPORTANCE Clostridioides difficile colonization can be asymptomatic or develop into
an infection ranging in severity from mild diarrhea to toxic megacolon, sepsis, and
death. Models that predict severity and guide treatment decisions are based on clini-
cal factors and C. difficile characteristics. Although the gut microbiome plays a role
in protecting against CDI, its effect on CDI disease severity is unclear and has not
been incorporated into disease severity models. We demonstrated that variation in
the microbiome of mice colonized with human feces yielded a range of disease out-
comes. These results revealed groups of bacteria associated with both severe and
mild C. difficile infection outcomes. Gut bacterial community data from patients with
CDI could improve our ability to identify patients at risk of developing more severe
disease and improve interventions that target C. difficile and the gut bacteria to
reduce host damage.

KEYWORDS CDI, Clostridium difficile, human microbiome, humanized mice, microbial
ecology

C lostridioides difficile infections (CDI) have increased in incidence and severity since
C. difficile was first identified as the cause of antibiotic-associated pseudomembra-

nous colitis (1). CDI disease severity can range from mild diarrhea to toxic megacolon
and death. The Infectious Diseases Society of America (IDSA) and Society for
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Healthcare Epidemiology of America (SHEA) guidelines define severe CDI in terms of a
white blood cell count greater than 15,000 cells/mm3 and/or a serum creatinine level
of greater than 1.5 mg/dL. Patients who develop shock or hypotension, ileus, or toxic
megacolon are considered to have fulminant CDI (2). Since these measures are CDI
outcomes, they have a limited ability to predict risk of severe CDI when the infection is
first detected. Schemes have been developed to score a patient’s risk for severe CDI
outcomes based on clinical factors but have not been robust for broad application (3).
Thus, we have limited ability to prevent patients from developing severe CDI.

Missing from CDI severity prediction models are the effects of the indigenous gut
bacteria. C. difficile interacts with the gut community in many ways. The indigenous
bacteria of a healthy intestinal community prevent C. difficile from infecting the gut (4).
A range of mechanisms can disrupt this inhibition, including antibiotics, medications,
and dietary changes, and lead to increased susceptibility to CDI (5–7). Once C. difficile
overcomes the inhibition and colonizes the intestine, the indigenous bacteria can ei-
ther promote or inhibit C. difficile by producing molecules or modifying the environ-
ment (8, 9). Bile acids metabolized by the gut bacteria can inhibit C. difficile growth
and affect toxin production (4, 10, 11). Bacteria in the gut also can compete more
directly with C. difficile through antibiotic production or nutrient consumption (12–14).
While the relationship between the gut bacteria and C. difficile has been established,
the effect the gut bacteria can have on CDI disease severity is unclear.

Recent studies have demonstrated that when mice with diverse microbial commun-
ities were challenged with a high-toxigenicity strain, it resulted in varied disease severity
(15), and when challenged with a low-toxigenicity strain, members of the gut microbial
community were associated with variation in colonization (16). Here, we sought to further
elucidate the relationship between members of the gut bacterial community and CDI dis-
ease severity when challenged with a highly toxigenic strain, C. difficile ribotype 027
(RT027). We hypothesized that since specific groups of gut bacteria affect the metabolism
of C. difficile and its clearance rate, specific groups of bacteria are associated with variation
in CDI disease severity. To test this hypothesis, we colonized germfree C57BL/6 mice with
human fecal samples to create varied gut communities. We then challenged the mice
with C. difficile RT027 and followed the mice for the development of severe outcomes of
moribundity and histopathologic cecal tissue damage. Since the murine host and C. diffi-
cile isolate were the same and only the gut community varied, the variation in disease se-
verity we observed was attributable to the gut microbiome.

RESULTS
C. difficile is able to infect germfree mice colonized with human fecal microbial

communities without antibiotics. To produce gut microbiomes with greater variation
than those found in conventional mouse colonies, we colonized germfree mice with
bacteria from human feces (17). We inoculated germfree C57BL/6 mice with homoge-
nized feces from each of 15 human fecal samples via oral gavage. These human fecal
samples were selected because they represented diverse community structures based
on community clustering (18). After the gut communities had colonized for 2 weeks,
we confirmed them to be C. difficile negative by culture (19). We then surveyed the
bacterial members of the gut communities by 16S rRNA gene sequencing of murine
fecal pellets (Fig. 1A). The bacterial communities from each mouse grouped more
closely to those communities from mice that received the same human fecal donor
community than to the mice who received a different human fecal donor community
(Fig. 1B). The communities were primarily composed of populations of Clostridia,
Bacteroidia, Erysipelotrichia, Bacilli, and Gammaproteobacteria. However, the gut bacte-
rial communities of each donor group of mice harbored unique relative abundance dis-
tributions of the shared bacterial classes.

Next, we tested this set of mice with their human-derived gut microbial communities
for susceptibility to C. difficile infection. A typical mouse model of CDI requires pretreat-
ment of conventional mice with antibiotics, such as clindamycin, to become susceptible
to C. difficile colonization (20, 21). However, we wanted to avoid modifying the gut
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communities with an antibiotic to maintain their unique microbial compositions and eco-
logical relationships. Since some of these communities came from people at increased
risk of CDI, such as recent hospitalization or antibiotic use (18), we tested whether C. diffi-
cile was able to infect these mice without an antibiotic perturbation. We hypothesized
that C. difficile would be able to colonize the mice who received their gut communities
from a donor with a perturbed community. Mice were challenged with 103 C. difficile
RT027 clinical isolate spores. The mice were followed for 10 days postchallenge, and their
stool was collected and plated for C. difficile CFU to determine the extent of the infection.
Surprisingly, communities from all donors were able to be colonized (Fig. 2). Two mice
were able to resist C. difficile colonization: both received their community from donor N1
(“N” represents nonmoribund), which may be attributed to experimental variation since
this group also had more mice. By colonizing germfree mice with different human fecal

FIG 1 Human fecal microbial communities established diverse gut bacterial communities in germfree mice. (A)
Relative abundances of the 10 most abundant bacterial classes observed in the feces of previously germfree
C57BL/6 mice 14 days postcolonization with human fecal samples (i.e., day 0 relative to C. difficile challenge).
Each column of abundances represents an individual mouse. Mice that received the same donor feces are
grouped together and labeled above with a letter (“N” for nonmoribund mice and “M” for moribund mice) and
number (ordered by mean histopathologic score of the donor group). “1” indicates the mice that did not have
detectable C. difficile CFU (Fig. 2). (B) Medians (points) and interquartile ranges (lines) of b diversity (u YC)
between an individual mouse and either all others that were inoculated with feces from the same donor or
inoculated with feces from a different donor. The b diversity among the same-donor comparison group was
significantly less than the b diversity of either the different-donor group or the overall donor community (P ,
0.05, calculated by Wilcoxon rank sum test).
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communities, we were able to generate diverse gut communities in mice, which were
susceptible to C. difficile infection without further modification of the gut community.

Infection severity varies by initial community. After we challenged the mice with
C. difficile, we investigated the outcome from the infection and its relationship to the
initial community. We followed the mice for 10 days postchallenge for colonization
density, toxin production, and mortality. Seven mice, with communities from donors
N1, N3, N4, and N5 were not colonized at detectable levels on the day after C. difficile
challenge but were infected (.106) by the end of the experiment. All mice that
received their community from donors M1 through M6 (“M” represents moribund) suc-
cumbed to the infection and became moribund within 3 days postchallenge. The
remaining mice, except the uninfected donor N1 mice, maintained C. difficile infection
through the end of the experiment (Fig. 2). At 10 days postchallenge, or earlier for the
moribund mice, mice were euthanized, fecal material was assayed for toxin activity,
and cecal tissue was collected and scored for histopathologic signs of disease (Fig. 3).
Overall, there was greater toxin activity detected in the stool of the moribund mice
(see Fig. S1 in the supplemental material). However, when looking at each group of
mice, we observed a range of toxin activities for both the moribund and nonmoribund
mice (Fig. 3A). Nonmoribund mice with communities from donors N2 and N5 through
N9 had comparable toxin activity to the moribund mice at 2 days postchallenge.
Additionally, not all moribund mice had toxin activity detected in their stool. Next, we
examined the cecal tissue for histopathologic damage. Moribund mice had high levels
of epithelial damage, tissue edema, and inflammation (Fig. S2), similar to previously
reported histopathologic findings for C. difficile RT027 (22). As observed with toxin ac-
tivity, the moribund mice had higher histopathologic scores than the nonmoribund
mice (P, 0.001). However, unlike the toxin activity, all moribund mice had consistently
high histopathologic summary scores (Fig. 3B). The nonmoribund mice (representing
donor groups N1 through N9) had a range of tissue damage from none detected to
levels similar to those in the moribund mice, which grouped by community donor.
Together, the toxin activity, histopathologic score, and moribundity showed variation
across the donor groups but were largely consistent within each donor group.

Microbial community members explain variation in CDI severity. We next inter-
rogated the bacterial communities at the time of C. difficile challenge (day 0) for their
relationship to infection outcomes using linear discriminant analysis (LDA) effect size

FIG 2 All donor groups resulted in C. difficile infection, but with different outcomes. The number of
C. difficile CFU per gram of stool was measured the day after challenge with 103 C. difficile RT027
clinical isolate 431 spores and at the end of the experiment, 10 days postchallenge. Each point
represents an individual mouse. Mice are grouped by donor and labeled by the donor letter (“N” for
nonmoribund mice and “M” for moribund mice) and number (ordered by mean histopathologic score
of the donor group). Points are colored by donor group. Mice from donor groups N1 through N6
succumbed to the infection prior to day 10 and were not plated on day 10 postchallenge. LOD, limit
of detection. “—Deceased—” indicates mice were deceased at that time point, so no sample was
available.
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(LEfSe) analysis to identify individual bacterial populations that could explain the varia-
tion in disease severity. We split the mice into groups by severity level based on mori-
bundity or 10-day postinfection (dpi) histopathologic score for nonmoribund mice.
This analysis revealed bacterial operational taxonomic units (OTUs) that were signifi-
cantly different at the time of challenge by the disease severity (Fig. 4A). OTUs associ-
ated with Akkermansia, Bacteroides, Clostridium sensu stricto, and Turicibacter were
detected at higher relative abundances in the mice that became moribund. OTUs asso-
ciated with Anaerotignum, Enterocloster, and Murimonas were more abundant in the
nonmoribund mice that would develop low intestinal injury. To understand the role of
toxin activity in disease severity, we applied LEfSe to identify the OTUs at the time of
challenge that most likely explain the differences between communities that had toxin
activity detected at any time point and those that did not (Fig. 4B). An OTU associated
with Bacteroides, OTU 7, which was associated with the presence of toxin, was also
associated with moribundity. Likewise, OTUs associated with Enterocloster and
Murimonas that were associated with no detected toxin also exhibited greater relative
abundance in communities from nonmoribund mice with a low histopathologic score.
We tested for correlations between the endpoint (10 dpi) relative abundances of OTUs
and the histopathologic summary score (Fig. 4C). The endpoint relative abundance of
Bacteroides OTU 17 was positively correlated with histopathologic score, as its day 0
relative abundance did with disease severity (Fig. 4A). The population of OTU 17 was

FIG 3 Histopathologic scores and toxin activities varied across donor groups. (A) Fecal toxin activity
was detected in some mice post-C. difficile challenge in both moribund and nonmoribund mice. (B)
Cecum scored for histopathologic damage from mice at the end of the experiment. Samples were
collected for histopathologic scoring on day 10 postchallenge for nonmoribund mice or the day the
mouse succumbed to the infection for the moribund group (day 2 or 3 postchallenge). Each point
represents an individual mouse. Mice are grouped by donor and labeled by the donor letter (“N” for
nonmoribund mice and “M” for moribund mice) and number (ordered by mean histopathologic score
of the donor group). Points are colored by donor group. Mice in group N1 that have a summary
score of 0 are the mice that did not have detectable C. difficile CFU (Fig. 2). Missing points are from
mice that had insufficient fecal sample collected for assaying toxin or cecum for histopathologic
scoring. *, significant difference between nonmoribund and moribund groups of mice by Wilcoxon
test (P , 0.002).
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also increased in the group of mice with detectable toxin. We also tested for correla-
tions between the endpoint relative abundances of OTUs and toxin activity, but none
were significant. Finally, we tested for associations between temporal changes and dis-
ease severity (Fig. S4). Most groups of bacteria maintained higher relative abundance
than the other outcome groups from day 0 through the end of the experiment. This
analysis identified bacterial populations that were associated with the variation in mor-
ibundity, histopathologic score, and toxin.

We next determined whether, collectively, bacterial community membership and
relative abundance could be predictive of the CDI disease outcome. We trained logistic
regression models with bacterial community relative abundance data from the day of

FIG 4 Individual fecal bacterial community members of the murine gut associated with C. difficile infection outcomes. (A and B) Relative
abundance of OTUs at the time of C. difficile challenge (day 0) that varied significantly by the moribundity and histopathologic summary
score or with detected toxin by LEfSe analysis. The median (points) and interquartile range (lines) are plotted. (A) Day 0 relative abundances
were compared across infection outcome of moribund (colored black) or nonmoribund with either a high histopathologic score (score
greater than the median score of 5, colored green) or a low histopathologic summary score (score less than the median score of 5, colored
light green). (B) Day 0 relative abundances were compared between mice in which toxin activity was detected (Toxin 1, colored dark purple)
and which no toxin activity was detected (Toxin 2, colored light purple). (C) Day 10 bacterial OTU relative abundances correlated with
histopathologic summary score. Data for each mouse are plotted and colored according to their categorization in panel A. Points at the
median score of 5 (gray points) were not included in panel A. Spearman’s correlations were statistically significant after Benjamini-Hochberg
correction for multiple comparisons. All bacterial groups are ordered by the LDA score. *, the bacterial group was unclassified at lower
taxonomic classification ranks.
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colonization at each taxonomic rank to predict toxin, moribundity, and histopathologic
summary score. We used the highest taxonomic classification rank that performed simi-
lar to lower ranks, which suggested the effect is associated with general attributes of the
bacterial group, as opposed to specific functions of more refined grouping. For predic-
tion of whether detectable toxin would be produced, microbial populations aggregated
by genus rank classification performed similarly to models using lower taxonomic ranks
(mean area under the receiver operating characteristic curve [AUROC] = 0.787 [Fig. S3]).
C. difficile increased odds of producing detectable toxin when the community infected
had less-abundant populations of Monoglobus, Akkermansia, Extibacter, Intestinimonas,
and Holdemania and had more abundant populations of Lachnospiraceae (Fig. 5A). Next,
we assessed the ability of the community to predict moribundity. Grouping of bacteria
by order rank classification was sufficient to predict which mice would succumb to the
infection before the end of the experiment (mean AUROC = 0.9205 [Fig. S3]). Many pop-
ulations contributed to increased odds of moribundity (Fig. 5B). Populations related to
Bifidobacteriales and Clostridia decreased the odds of a moribund outcome. Finally, the
relative abundances of OTUs were able to predict a high or low histopathologic
score 10 dpi (with histopathologic scores dichotomized as in previous analysis;
mean AUROC = 0.99 [Fig. S3]). The model identified some similar OTUs to the LEfSe
analysis, such as Murimonas (OTU 48), Bacteroides (OTU 7), and Hungatella (OTU 24).
These models have shown that the relative abundances of bacterial populations and
their relationships with each other could be used to predict the variation in mori-
bundity, histopathologic score, and detectable toxin of CDI.

DISCUSSION

Challenging mice colonized with different human fecal communities with C. difficile
RT027 demonstrated that variation in members of the gut microbiome affects C. diffi-
cile infection disease severity. Our analysis revealed an association between the relative
abundance of bacterial community members and disease severity. Previous studies
investigating the severity of CDI disease involving the microbiome have had a limited
ability to interrogate this relationship between the microbiome and disease severity.
Studies that have used clinical data have a limited ability to control variation in the
host, microbiome, or C. difficile ribotype (23). Murine experiments typically use a single
mouse colony and different C. difficile ribotypes to create differences in severity (24).
Recently, our group has begun uncovering the effect microbiome variation has on C.
difficile infection. We showed the variation in the bacterial communities between mice
from different mouse colonies resulted in different clearance rates of C. difficile (16).
We also showed varied abilities of mice to spontaneously eliminate C. difficile infection
when they were treated with different antibiotics prior to C. difficile challenge (25).
Overall, the results presented here have demonstrated that the gut bacterial commu-
nity contributed to the severity of C. difficile infection.

C. difficile can lead to asymptomatic colonization or infections with severity ranging
from mild diarrhea to death. Physicians use classification tools to identify patients
most at risk of developing a severe infection using white blood cell counts, serum albu-
min level, or serum creatinine level (2, 26, 27). Those levels are driven by the activities
in the intestine (28). Research into the drivers of this variation have revealed factors
that make C. difficile more virulent. Strains are categorized for their virulence by the
presence and production of the toxins TcdA, TcdB, and binary toxin and the strains’
prevalence in outbreaks, such as ribotypes 027 and 078 (20, 29–32). However, other
studies have shown that disease is not necessarily linked with toxin production (33) or
the strain (34). Furthermore, there is variation in the genome, growth rate, sporulation,
germination, and toxin production in different isolates of a strain (35–38). This variation
may help explain why severe CDI prediction tools often miss identifying many patients
with CDI that will develop severe disease (3, 24, 39, 40). Therefore, it is necessary to
gain a full understanding of all factors contributing to disease variation to improve our
ability to predict severity.
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The state of the gut bacterial community determines the ability of C. difficile to colo-
nize and persist in the intestine. C. difficile is unable to colonize an unperturbed healthy
murine gut community and is only able to become established after a perturbation
(21). Once colonized, the different communities lead to different metabolic responses

FIG 5 Fecal bacterial community members of the murine gut at the time of C. difficile infection
predicted outcomes of the infection. On the day of infection (day 0), bacterial community members
grouped by different classification rank were modeled with logistic regression to predict the
infection outcome. The models used the highest taxonomic classification rank without a decrease in
performance. Models used all community members, but plotted are those members with a mean
odds ratio not equal to 1. The medians (solid points) and interquartile ranges (lines) of the odds ratio
are plotted. Bacterial groups are ordered by their odds ratio. *, bacterial group was unclassified at lower
taxonomic classification ranks. (A) Bacterial members grouped by genus predicted which mice would
have toxin activity detected at any point throughout the infection. Data with a decreased probability of
toxin activity are colored light purple, and those with an increased probability of toxin activity are colored
dark purple. (B) Bacterial members grouped by order predicted which mice would become moribund.
Data with a decreased probability of moribundity are colored light blue, and those with an increased
probability of moribundity are colored dark blue. (C) Bacterial members grouped by OTU predicted if the
mice would have a high (greater than the median score of 5) or low (less than the median score of 5)
histopathologic summary score. Data with a decreased probability of high histopathologic score are
colored light green, and those with an increased probability of high histopathologic score are colored
dark green.
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and dynamics of the C. difficile population (9, 25, 41). Gut bacteria metabolize primary
bile acids into secondary bile acids (4, 42, 43). The concentration of these bile acids
affects germination, growth, toxin production, and biofilm formation (10, 11, 44, 45).
Members of the bacterial community also affect other metabolites C. difficile utilizes.
Bacteroides thetaiotaomicron produces sialidases, which release sialic acid from the mu-
cosa for C. difficile to utilize (46, 47). The nutrient environment affects toxin production
(48). Thus, many of the actions of the gut bacteria modulate C. difficile in ways that
could affect the infection and resultant disease.

Myriad studies have explored the relationship between the microbiome and CDI
disease. Studies examining difference in disease often use different C. difficile strains or
ribotypes in mice with similar microbiota as a proxy for variation in disease, such as
strain 630 for nonsevere disease and RT027 for severe disease (20, 29, 30, 49). Studies
have also demonstrated variation in infection through tapering antibiotic dosage (21,
25, 50) or by reducing the amount of C. difficile cells or spores used for the challenge
(20, 50). These studies often either lack variation in the initial microbiome or have vari-
ation in the C. difficile infection itself, confounding any association between variation
in severity and the microbiome. Recent studies have shown variation in the initial
microbiome via different murine colonies or colonizing germfree mice with human
feces followed by challenge with C. difficile, which resulted in varied outcomes of the
infection (15, 16, 51).

Our data have demonstrated gut bacterial relative abundances are associated with
variation in toxin production, histopathologic scoring of the cecal tissue, and mortality.
This analysis revealed populations of Akkermansia, Anaerotignum, Blautia, Enterocloster,
Lactonifactor, and Monoglobus were more abundant in the microbiome of nonmori-
bund mice that had low histopathologic scores and no detected toxin. The protective
roles of these bacteria are supported by previous studies. Blautia, Lactonifactor, and
Monoglobus have been shown to be involved in dietary fiber fermentation and associ-
ated with healthy communities (52–54). Anaerotignum, which produces short-chain
fatty acids, has been associated with healthy communities (55, 56). Akkermansia and
Enterocloster were also identified as more abundant in mice that had low histopatho-
logic scores, but have contradictory supporting evidence in the current literature. In
our data, a population of Akkermansia, OTU 5, was most abundant in the nonmoribund
mice with low histopathologic scores, but moribund mice had an increased population
of Akkermansia OTU 8. This difference could indicate either a more protective mucus
layer was present, inhibiting colonization (57, 58), or mucus consumption by
Akkermansia could have been cross-feeding C. difficile or exposing a niche for C. difficile
(59–61). Similarly, Enterocloster was more abundant and associated with low histopa-
thologic scores. Enterocloster has been associated with healthy populations and has
been used to monocolonize germfree mice to reduce the ability of C. difficile to colo-
nize (62, 63). However, Enterocloster has also been involved in infections such as bac-
teremia (64, 65). These data have exemplified populations of bacteria that have the
potential to be either protective or harmful. Thus, the disease outcome is not likely
based on the abundance of individual populations of bacteria; rather, it is the result of
the interactions of the community.

The groups of bacteria that were associated with either a higher histopathologic
score or moribundity are members of the indigenous gut community that also have
been associated with disease, often referred to as opportunistic pathogens. Some of
the populations of Bacteroides, Enterococcus, and Klebsiella that are associated with
worse outcomes have been shown to have pathogenic potential, expand after antibi-
otic use, and are commonly detected in CDI cases (66–69). In addition to these popula-
tions, Eggerthella, Prevotellaceae, and Helicobacter, which are associated with worse
outcomes, have also been associated with intestinal inflammation (70–72). Recently,
Helicobacter hepaticus was shown to be sufficient to cause susceptibility to CDI in inter-
leukin-10 (IL-10)-deficient C57BL/6 mice (73). In our experiments, when Helicobacter
was present, the infection was more likely to result in a high histopathologic score
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(Fig. 4C; see Fig. S4 in the supplemental material). While we did not use IL-10-deficient
mice, it is possible the bacterial community and host response are similarly modified by
Helicobacter, allowing C. difficile infection and host damage. Aside from Helicobacter,
these groups of bacteria that were associated with more severe outcomes did not have
a conserved association between their relative abundance and the disease severity
across all mice.

Since we observed groups of bacteria that were associated with less-severe disease, it
may be appropriate to apply the damage response framework for microbial pathogene-
sis to CDI (74, 75). This framework posits that disease is not driven by a single entity—
rather it is an emergent property of the responses of the host immune system, infecting
microbe, C. difficile, and the indigenous microbes at the site of infection. In this set of
experiments, we used the same host background, C57BL/6 mice, and the same infecting
microbe, C. difficile RT027 clinical isolate 431, with different gut bacterial communities.
The bacterial groups in those communities were often present in both moribund and
nonmoribund mice and across the range of histopathologic scores. Thus, it was not
merely the presence of the bacteria but their activity in response to the other microbes
and host that affected the extent of the host damage. Additionally, while each mouse
and C. difficile population had the same genetic background, they too were reacting to
the specific microbial community. Different gut microbial communities can also have dif-
ferent effects on the host immune responses (76). Disease severity is driven by the cumu-
lative effect of the host immune response and the activity of C. difficile and the gut bac-
teria. C. difficile drives host damage through the production of toxin. The gut microbiota
can modulate host damage through the balance of metabolic and competitive interac-
tions with C. difficile, such as bacteriocin production or mucin degradation, and interac-
tions with the host, such as host mucus glycosylation or intestinal IL-33 expression (15,
77). For example, low levels of mucin degradation can provide nutrients to other com-
munity members, producing a diverse nondamaging community (78). However, if mucin
degradation becomes too great, it reduces the protective function of the mucin layer
and exposes the epithelial cells. This overharvesting can contribute to the host damage
due to other members producing toxin. Thus, the resultant intestinal damage is the bal-
ance of all activities in the gut environment. Host damage is the emergent property of
numerous damage response curves, such as one for host immune response, one for C.
difficile activity, and another for microbiome community activity, each of which is a com-
posite curve of the individual activities from each group, such as antibody production,
neutrophil infiltration, toxin production, sporulation, and fiber and mucin degradation.
Therefore, while we have identified populations of interest, it may be necessary to target
multiple types of bacteria to reduce the community interactions contributing to host
damage.

Here, we have shown several bacterial groups and their relative abundances are
associated with variation in CDI disease severity. Further understanding how the micro-
biome affects severity in patients could reduce the amount of adverse CDI outcomes.
When a patient is diagnosed with CDI, the gut community composition, in addition to
the traditionally obtained clinical information, may improve our severity prediction
and guide prophylactic treatment. Treatment of the microbiome at the time of diagno-
sis, in addition to C. difficile, may prevent the infection from becoming more severe.

MATERIALS ANDMETHODS
Animal care. Six- to 13-week-old male and female germfree C57BL/6 were obtained from a single

breeding colony in the University of Michigan Germ-free Mouse Core. Mice were grouped by bacterial
community donor (M1, n = 3; M2, n = 3; M3, n = 3; M4, n = 3; M5, n = 7; M6, n = 3; N1, n = 11; N2, n = 7;
N3, n = 3; N4, n = 3; N5, n = 3; N6, n = 3; N7, n = 7; N8, n = 3; and N9, n = 2), housed in cages at 2 to 4
mice per cage, and maintained in germfree isolators at the University of Michigan germfree facility. All
mouse experiments were approved by the University Committee on Use and Care of Animals at the
University of Michigan.

C. difficile experiments. Human fecal samples were obtained as part of a study by Schubert et al.
and selected based on community clusters (18) to result in diverse community structures (see Table S1
in the supplemental material). Feces were homogenized by mixing 200 mg of sample with 5 mL of phos-
phate-buffered saline (PBS). Mice were inoculated with 100 mL of the fecal homogenate via oral gavage.

Microbiota Potentiates C. difficile Infection Severity mBio

Month YYYY Volume XX Issue XX 10.1128/mbio.01183-22 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 1

0 
A

ug
us

t 2
02

2 
by

 6
5.

18
3.

17
0.

18
5.

https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.01183-22


Two weeks after the fecal community inoculation, mice were challenged with C. difficile. Stool samples
from each mouse were collected 1 day prior to C. difficile challenge and plated for C. difficile enumera-
tion to confirm no C. difficile was detected in stool prior to challenge. C. difficile clinical isolate 431 came
from Carlson et al., had previously been isolated and characterized (35, 36), and was recently further
characterized (37). Spore concentrations were determined both before and after challenge (79). A total
of 103 C. difficile spores were given to each mouse via oral gavage.

Sample collection. Fecal samples were collected on the day of C. difficile challenge and the following
10 days. Each day, a fecal sample was collected and a portion was weighed for plating (approximately
30 mg), and the remaining sample was frozen at 220°C. Anaerobically, the weighed fecal samples were
serially diluted in PBS, plated on TCCFA plates, and incubated at 37°C for 24 h. The plates were then
counted for the number of CFU (80).

DNA sequencing. From the frozen fecal samples, total bacterial DNA was extracted using MoBio
PowerSoil-htp 96-well soil DNA isolation kit. We amplified the 16S rRNA gene V4 region and sequenced
the resulting amplicons using an Illumina MiSeq sequencer, as described previously (81).

Sequence curation. Sequences were processed with mothur (v.1.44.3), as previously described (81,
82). In short, we used a 3% dissimilarity cutoff to group sequences into operational taxonomic units
(OTUs). We used a naive Bayesian classifier with the Ribosomal Database Project training set (version 18)
to assign taxonomic classifications to each OTU (83). We sequenced a mock community of a known com-
munity composition and 16S rRNA gene sequences. We processed this mock community with our sam-
ples to calculate the error rate for our sequence curation, which was 0.19%.

Toxin cytotoxicity assay. To prepare a sample for the activity assay, fecal material was diluted 1:10
(wt/vol) using sterile PBS and then filter sterilized through a 0.22-mm-pore filter. Toxin activity was
assessed using a Vero cell rounding-based cytotoxicity assay, as described previously (30). The cytotoxic-
ity titer was determined for each sample as the last dilution that resulted in at least 80% cell rounding.
Toxin titers are reported as the log10 value of the reciprocal of the cytotoxicity titer.

Histopathology evaluation.Mouse cecal tissue was placed in histopathology cassettes and fixed in
10% formalin, and then the samples were stored in 70% ethanol. McClinchey Histology Labs, Inc.
(Stockbridge, MI), embedded the samples in paraffin, sectioned them, and created the hematoxylin- and
eosin-stained slides. The slides were scored using previously described criteria by a board-certified vet-
erinary pathologist who was blind to the experimental groups (30). Slides were scored as 0 to 4 for pa-
rameters of epithelial damage, tissue edema, and inflammation, and a summary score of 0 to 12 was
generated by summing the three individual parameter scores. For nonmoribund mice, histopathological
summary scores used for LEfSe and logistic regression were split into high and low groups based on
greater or less than the median summary score of 5 because they had a bimodal distribution (P, 0.05).

Statistical analysis and modeling. To compare community structures, we calculated Yue and
Clayton dissimilarity matrices (u YC) in mothur (84). For this calculation, we averaged 1,000 subsamples or
rarified samples to 2,107 sequence reads per sample to limit uneven sampling biases. We tested for dif-
ferences in individual taxonomic groups that would explain the outcome differences with LEfSe (85) in
mothur (using default parameters with an LDA of .4). We tested for differences in temporal trends
through fitting a linear regression model to each OTU and tested for differences in regression coeffi-
cients by histopathological summary scores with LEfSe (85) in mothur (using default parameters with an
LDA of .3). The remaining statistical analysis and data visualization were performed in R (v4.0.5) with
the tidyverse package (v1.3.1). We tested for significant differences in b diversity (u YC), histopathological
scores, and toxin activity using the Wilcoxon rank sum test, nonunimodality to the nonmoribund histo-
pathological summary score using Hartigans’ dip test, and toxin detection in mice using the Pearson’s
chi-square test. We used Spearman’s correlation to identify which OTUs that had a correlation between
their relative abundance and the histopathologic summary score. P values were then corrected for multi-
ple comparisons with a Benjamini and Hochberg adjustment for a type I error rate of 0.05 (86). We built
L2 logistic regression models using the mikropml package (87). Sequence counts were summed by taxo-
nomic ranks from day 0 samples and normalized by centering to the feature mean and scaling by the
standard deviation, and features positively or negatively correlated were collapsed into a single feature.
For each L2 logistic regression model, we ran 100 random iterations using values of 1e0, 1e1, 1e2, 2e2,
3e2, 4e2, 5e2, 6e2, 7e2, 8e2, 9e2, 1e3, and 1e4 for the L2 regularization penalty, with a split of 80% of
the data for training and 20% of the data for testing. Finally, we did not compare murine communities
to donor community or clinical data because germfree mice colonized with nonmurine fecal commun-
ities have been shown to more closely resemble the murine communities than the donor species com-
munity (88). Furthermore, it is not our intention to make any inferences regarding human-associated
bacteria and their relationship with human CDI outcome.

Code availability. Scripts necessary to reproduce our analysis and this article are available in the
GitHub online repository (https://github.com/SchlossLab/Lesniak_Severity_mBio_2022).

Accession number(s). All 16S rRNA gene sequence data and associated metadata are available
through the Sequence Read Archive via accession no. PRJNA787941.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.1 MB.
FIG S2, TIF file, 0.3 MB.
FIG S3, TIF file, 0.6 MB.
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FIG S4, TIF file, 2 MB.
TABLE S1, PDF file, 0.02 MB.
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