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Abstract
Background While Lynch syndrome (LS) is a highly penetrant colorectal cancer (CRC) syndrome, there is considerable 
variation in penetrance; few studies have investigated the association between microbiome and CRC risk in LS. We analyzed 
the microbiome composition among individuals with LS with and without personal history of colorectal neoplasia (CRN) 
and non-LS controls.
Methods We sequenced the V4 region of the 16S rRNA gene from the stool of 46 individuals with LS and 53 individuals 
without LS. We characterized within community and in between community microbiome variation, compared taxon abun-
dance, and built machine learning models to investigate the differences in microbiome.
Results There was no difference within or between community variations among LS groups, but there was a statisti-
cally significant difference in both within and between community variation comparing LS to non-LS. Streptococcus and 
Actinomyces were differentially enriched in LS-CRC compared to LS-without CRN. There were numerous differences in 
taxa abundance comparing LS to non-LS; notably, Veillonella was enriched and Faecalibacterium and Romboutsia were 
depleted in LS. Finally, machine learning models classifying LS from non-LS controls and LS-CRC from LS-without CRN 
performed moderately well.
Conclusions Differences in microbiome composition between LS and non-LS may suggest a microbiome pattern unique to 
LS formed by underlying differences in epithelial biology and immunology. We found specific taxa differences among LS 
groups, which may be due to underlying anatomy. Larger prospective studies following for CRN diagnosis and microbiome 
composition changes are needed to determine if microbiome composition contributes to CRN development in patients with LS.

Keywords Lynch syndrome (LS) · Colorectal cancer (CRC) · Colorectal neoplasia (CRN) · Microbiome · DNA mismatch 
repair (MMR)

Introduction

Lynch syndrome (LS) is an autosomal dominant, highly 
penetrant colorectal cancer (CRC) syndrome caused by 
inherited defects in DNA mismatch repair (MMR) genes 
(MLH1, MSH2, MSH6, PMS2, and EPCAM). There is 

considerable variation in phenotypes of colorectal neoplasia 
(CRN) among carriers of LS-associated germline variants 
[1]. This heterogeneity has been attributed to patient factors, 
such as age, sex, specific MMR genetic mutation, and/or 
health behaviors including diet, physical activity, and smok-
ing; however, the relative impact of these on the severity of 
CRN is still unclear.

Accumulating evidence suggests that features of the micro-
biome contribute to sporadic colon cancer. Specific bacteria 
with virulent toxins have been associated with CRC, including 
Bacteroides fragilis (ETBF), Escherichia coli (loci/colibactin/
pks + Ec), Fusobacterium nucleatum (FadA adhesin/invasin), 
and other bacteria (e.g., Porphyromonas), but the majority 
of studies have described global alterations in microbiome 
[2–11]. Recurrent patterns of dysbiosis, or imbalanced gut 
microbiome, found in CRC cases include lower � diversity, 
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differences in � diversity, and recurring differences in func-
tional taxon abundances, namely decreased levels of benefi-
cial commensal bacteria and increased pathogenic bacteria 
[12]. Furthermore, increasing dysbiosis may track with the 
adenoma-adenocarcinoma spectrum and excision of colonic 
lesions has been shown to normalize the microbiome [13, 14].

Few studies have investigated the dynamics of the micro-
biome composition in LS. These studies have not shown a 
consistent difference in the microbiome composition com-
paring MMR pathogenic variant carriers with CRC and/or 
adenoma to carriers without prior CRN. One larger study 
followed a cohort of 100 patients with LS for 1 year and 
found that the microbiome in baseline stool sample differed 
by baseline diagnosis of adenoma, but also noted that his-
tory of colon resection was more strongly associated with 
observed differences in microbiome composition [15]. 
Meanwhile, several smaller studies have noted a difference 
between individuals with and without LS [15–18].

Our aim was to determine whether there were differ-
ences in the microbiome composition among individuals 
with LS with and without personal history of CRN and 
non-LS controls.

Methods

Study Design

Subjects We enrolled 46 individuals with genetically con-
firmed LS from the University of Michigan cancer genetics 
clinic. We enrolled 53 individuals without LS and without 
a history of CRN (non-LS controls) recruited from the local 
Ann Arbor community. Individuals with diagnoses of HIV/
AIDS, hepatitis B or C, and/or inflammatory bowel disease 
were excluded. All study participants provided informed 
consent. The study protocol was approved by the University 
of Michigan IRB (HUM00113700).

Data Collection At enrollment, participants filled out ques-
tionnaires eliciting information on demographics, medical 
comorbidities, current medications, and family history. Sub-
jects provided a stool sample for sequencing using a Zymo 
stool collection kit and DNA/RNA Shield Collection tube.

16S rRNA Gene Sequencing and Analysis

DNA was extracted using a 96-well Soil DNA isolation 
kit and an epMotion 5075 automated pipetting system. 
We amplified the V4 region of the 16S rRNA gene using 
custom barcoded primers and sequenced it using Illumina 
MiSeq sequencer [19]. The 16S rRNA gene sequences were 
curated using the mothur software package (version 1.47.0) 

[20]. We merged paired-end reads into contigs, aligned them 
to the SILVA 16S rRNA sequence database, and removed 
low-quality sequences and chimeras [21]. We classified 
sequences by training a naive Bayesian classifier with a 
16S rRNA gene training set (Ribosomal Database Project 
(RDP)) [22]. We clustered sequences into operational taxo-
nomic units (OTUs) using a 97% similarity cutoff with the 
OptiClust clustering algorithm [23].

Statistical Analysis

All statistical analyses were performed in R (version 4.0.2). 
Baseline characteristics were characterized and compared 
according to study groups: LS subjects with a history of 
CRC (LS-CRC), a history of adenoma (LS-adenoma), no 
history of either CRC or adenoma (LS-without CRN), and 
non-Lynch controls (non-LS controls). These baseline vari-
ables were assessed using medians and interquartile ranges 
for continuous variables, and as frequencies and percentages 
for categorical variables.

We quantified the variation in microbial communities 
using metrics for α-diversity (inverse Simpson index) to 
quantify the variation within groups and β-diversity-based 
distance metric (Bray–Curtis) to quantify the variation 
between groups (distance). Inverse Simpson index and 
Bray–Curtis distance values were calculated with rarefac-
tion using the mothur software package. We compared dif-
ferences in the inverse Simpson index according to study 
groups (LS-CRC, LS-adenoma, LS-without CRN, and non-
LS controls), history of surgery (including total colectomy, 
left hemicolectomy, right colectomy, and no surgery), and 
MMR pathogenetic variant (MLH1, MSH2, MSH6, PSM2, 
EPCAM) using pairwise Kruskal–Wallis test. We also mod-
eled α-diversity (within community diversity) as the inde-
pendent variable using a multivariable linear regression 
model with study group (LS-CRC, LS-adenoma, LS-without 
CRN, and non-LS controls) as the dependent variable while 
also controlling for age, BMI, and sex. We then compared 
differences in the Bray–Curtis distance by study group (LS-
CRC, LS-adenoma, LS-without CRN, and non-LS controls), 
history of colon surgery, and MMR pathogenetic variant 
using pairwise PERMANOVA. To visualize the Bray–Cur-
tis distance values, non-metric multidimensional scaling 
(NMDS) was calculated, and results were plotted using the 
vegan R package. We repeated these analyses comparing LS 
groups to non-LS and compared each individual LS study 
groups to non-LS to identify which group was driving a 
difference.

We then identified taxa that were differentially abundant 
between study groups (LS-CRC, LS-adenoma, LS-without 
CRN, and non-LS controls), history of colon surgery, and 
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among MMR pathogenic variants in patients with LS using 
beta-binomial regression with the Corncob package in R. 
This analysis models associations between covariates of 
interest and both the mean taxon abundance and variation 
in taxon abundance allowing for overdispersion, which is 
characteristic of microbiome data [24]. The Corncob pack-
age uses the Benjamini-Hochberg (B-H) method to adjust 
p-values in the multiple correlation analyses and controls for 
the expected false discovery rate at 0.05. We repeated these 
analyses comparing all LS groups to non-LS controls. Asso-
ciations between groups and taxa with adjusted p-values less 
than 0.05 were considered statistically significant.

We then trained machine learning classification models 
comparing (1) LS with a history of CRC to LS without a his-
tory of CRC or adenoma, (2) LS with a history of adenoma to 
LS without a history of CRC or adenoma, and (3) all individu-
als with LS to non-LS controls. We first combined information 
from the individual taxa and evaluated the ability to classify 
LS patient using logistic regression models from the mikropml 
package in R [25]. We then created a model that incorporated 
taxa as well as key demographic risk factors including age, 
sex, and BMI to determine if these demographic risk factors 
improved the model. We computed the area under the receiver 
operator characteristic curve (AUROC) to measure the ability 
of each model (taxa alone and taxa plus demographic factors) 
to correctly classify subjects to their true groups. We compared 
the cross-validated AUROC to the testing AUROC to evaluate 
the generalizability of each model and to check whether the 
models were overfit.

Results

Baseline Characteristics of Study Participants

The 99 study participants were grouped as follows: 17 LS-
adenoma, 10 LS-CRC, 19 LS-without CRN, and 53 non-LS 
controls. Subjects were 83% female and had a median age of 
40.5 years and a median BMI of 26.6 kg/m2 (see Table 1). 
LS-CRC and LS-without CRN had a lower BMI compared 
to LS-adenoma and non-LS controls. Sex and tobacco use 
were not different across these three groups. Patients with 
LS were older than non-LS controls. Patients with LS-CRC 
were more likely to have a MLH1 and MSH2 and less likely 
to have a MSH6 gene defect.

Associations Between History of CRN and Gut 
Microbiome

We calculated within community diversity or alpha diversity 
using inverse Simpson index and found the median value 
was 3.62. Among individuals with LS, there was no dif-
ference when we compared LS-CRC to LS-without CRN 
or LS-adenoma to LS-without CRN (Fig. 1A). Because we 
noticed a difference between LS and non-LS, we repeated 
these analyses comparing each LS group (LS-CRC, LS-
adenoma, LS-without CRN) to non-LS to determine which 
group was driving the difference. The inverse Simpson 
index was higher in LS-CRC relative to non-LS controls 
(p-value = 0.008) and LS-without CRN compared to non-LS 

Table 1  Baseline characteristics of LS with and without CRN and non-LS controls

a Median (IQR); n (%)
b Kruskal-Wallis rank sum test; Fisher’s exact test

Characteristic Non-LS controls, 
N = 53a

LS-no CRN, N = 19a LS-adenoma, N = 17a LS-CRC, N = 10a p-valueb

Age 36 (31, 40) 52 (38, 60) 56 (51, 66) 64 (55, 69) <0.001
BMI 28 (24, 32) 25 (23, 28) 31 (24, 32) 24 (21, 27) 0.03
Sex 0.3
  Female 47 (89%) 15 (79%) 12 (71%) 9 (90%)
  Male 6 (11%) 4 (21%) 4 (24%) 1 (10%)

Surgery <0.001
  No surgery 19 (100%) 17 (100%) 0 (0%)
  L hemicolectomy 0 (0%) 0 (0%) 2 (20%)
  R hemicolectomy 0 (0%) 0 (0%) 2 (20%)
  Colectomy 0 (0%) 0 (0%) 6 (60%)

Gene 0.01
  EPCAM 1 (5.3%) 1 (5.9%) 1 (10%)
  MLH1 3 (16%) 4 (24%) 3 (30%)
  MSH2 2 (11%) 7 (41%) 3 (30%)
  MSH6 11 (58%) 5 (29%) 0 (0%)
  PMS2 2 (11%) 0 (0%) 3 (30%)



210 Journal of Gastrointestinal Cancer (2024) 55:207–218

1 3

controls (p-value = 0.007), but there was no difference 
between LS-adenoma and non-LS controls. There was a 
significant difference in inverse Simpson index according 
to history of colon surgery (p-value = 0.02).

PERMANOVA analyses were performed to compare the 
overall community structure of the gut microbiota of all sam-
ples based on the OTU relative abundance (Fig. 2). When 
we performed PERMANOVA analysis among patients with 
LS, we found no differences in beta diversity or community 
distance according to history of adenoma (p-value = 0.64) or 
CRC (p-value = 0.11) compared to without CRN. We did find 
a difference in community structure according to a history of 
colon surgery (p-value < 0.001); however, there were only 2 
people with a history of left hemicolectomy and 2 people with 
history of right hemicolectomy. These small numbers could 
have made the community structures appear more different 
because of sampling error due to smaller numbers not rep-
resenting intraindividual heterogeneity of these populations.

Variation in community structure was associated with 
LS status compared to non-LS controls (Fig. 2), even when 
we corrected for age (p-value < 0.001). Again, we wanted to 
determine which LS group was responsible for the observed 
difference between the community structures in LS and non-
LS. Therefore, we repeated the PERMANOVA analyses com-
paring each LS group (LS-CRC, LS-adenoma, LS-without 
CRN) to non-LS. We found a significant difference in com-
munity structure when we compared LS-CRC to non-LS con-
trols (p-value < 0.001) and LS-adenoma to non-LS controls 
(p-value = 0.003), but no difference between LS-without CRN 

to non-LS controls (p-value = 0.11). The difference in commu-
nity structure between LS and non-LS was driven by LS-CRC  
and LS-adenoma and not LS-without CRC. In converse, we 
found no differences in community structure when we com-
pared by pathogenic variant groups among LS (Fig. 2).

Differentially Abundant Taxa by History 
of Adenoma, Colon Cancer, Colon Surgery,  
and LS Status

Veillonella was depleted in LS-adenoma compared to LS-
without CRN and is the only taxon difference between 
these groups, whereas Veillonella, Streptococcus, and 
Actinomyces were differentially enriched in LS-CRC com-
pared to LS-without CRN (Figs. 3 and 4). Notably, we 
identified the same differentially abundant genera associ-
ated with LS with history of colon surgery compared to LS 
without surgery, Streptococcus and Actinomyces (Figs. 5 
and 6). We found several taxa that differed between LS 
and non-LS controls (Fig. 4). Compared to non-LS con-
trols, Veillonella, 2 members of Streptococcus, Lacto-
coccus, Lachnospiraceae, and Clostridium XIVa were 
enriched and 2 members of Faecalibacterium, Rumino-
coccus, and Bacteroides were depleted in total LS. When 
we looked separately at each group compared to non-LS 
controls, Veillonella and Lachnospiraceae were enriched 
in LS-without CRN and Romboutsia and Faecalibacte-
rium were depleted (Fig. 4). Parabacteroides, Veillonella, 
and Erysipelotrichaceae were depleted and unclassified 

Fig. 1  Alpha diversity by A group status, B MMR pathogenic variant, and C surgery history
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Fig. 2  Beta diversity (between 
community) assessed with PER-
MANOVA by A group status, B 
MMR pathogenic variant, and 
C surgery history
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Fig. 3  Differential abundance of OTUs by study group among LS assessed with beta-binomial regression

Fig. 4  Differential abundance of OTUs by study group assessed with beta-binomial regression



213Journal of Gastrointestinal Cancer (2024) 55:207–218 

1 3

Fig. 5  Differential abundance 
among LS by history of colon 
surgery assessed with beta-bino-
mial regression: any surgery 
versus no surgery

Fig. 6  Differential abundance among LS by history of colon surgery assessed with beta-binomial regression
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Lachnospiraceae and Clostridium XIVa were enriched in 
LS-adenoma (Fig. 4). Veillonella, Pasteurellaceae, Strep-
tococcus, Lactococcus, and Actinomyces were enriched  
and Parabacteroides, Romboutsia, Clostridium IV, Erysip-
elotrichaceae, and Lachnospiraceae were depleted in LS-
without CRN. We found taxon abundance differences by 
pathogenic variant groups. MLH1, MSH2, and MSH6 were 
depleted in Bifidobacterium, while MSH2 was enriched in 
Actinomyces and both MLH1 and MS2 were enriched in 
Streptococcus compared to PSM2 (Fig. 7).

Classification of CRC and Adenoma History Using 
OTUs in a Machine Learning Model

We compared the cross-validation AUROC to the test-
ing AUROC for each model (Fig. 8). The testing models 
were performed as well as the training models. There-
fore, we were able to conclude that the models were 
not overfit (Table 2). The model comparing LS-CRC to 

LS-without CRN built with taxa and demographic factors 
(AUROC = 0.833, IQR: 0.5, 1.0) performed better than 
taxa alone (AUROC = 0.667, IQR: 0.5, 1.0). However, the 
confidence intervals were large and overlapped due to the 
small number of individuals included in these models. The 
model designed to classify LS-adenoma from LS-without 
CRN performed poorly (AUROC = 0.50, IQR: 0.33, 0.67). 
The model performance improved slightly when demo-
graphic factors were added (AUROC = 0.56, IQR: 0.44, 
0.88). The models built to classify LS and non-LS controls 
performed well (AUROC = 0.69, IQR: 0.66, 0.72) and 
there was no change in AUROC when demographics were 
added to the model (AUROC = 0.68, IQR: 0.66, 0.70). 
The models that included both taxa and demographic fac-
tors demonstrated improved performance classifying LS 
according to history of CRN compared to taxa only mod-
els. Models built to distinguish LS from non-LS controls 
showed no improvement in model performance after add-
ing demographics factors.

Fig. 7  Differential abundance of OTUs by LS pathogenic variant assessed with beta-binomial regression
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Conclusion

Our study found significant differences in the microbiome 
between LS with or without CRN and non-Lynch controls 
and few between LS with CRC from LS-without CRN. We 
found no global differences (alpha or beta diversity) between 

LS with CRN (either CRC or adenoma) and without CRN. 
There were taxon-specific differences comparing individu-
als with LS and history of CRC and LS without any CRN, 
Streptococcus and Actinomyces. Notably, two Streptococ-
cus species, Streptococcus bovis and Streptococcus gallo-
lyticus, have been frequently linked with colon cancer [26]. 
Additionally, Actinomyces has been associated with CRN 
in a systematic review [27]. However, we also found these 
same changes when we evaluated by history of surgery. Post-
surgical anatomy may be an overriding factor confounding 
the association between history of colon cancer and micro-
biome composition as all individuals with a history of CRC 
underwent colorectal surgery.

While there were no global differences among LS 
comparing CRN to no history, we found both global and 
multiple taxon level differences between LS and non-LS 
controls. LS carriers had a higher alpha diversity com-
pared to non-LS controls. Similarly, there were significant 
differences in community structure. Veillonella has been 
associated with inflammatory conditions including Crohn’s 
disease and hepatic encephalopathy and was enriched in 
LS. LS carriers can also have dysplastic crypts that may 
provoke chronic low-level inflammation despite being 
histologically undetectable. Lower abundances of bacteria 

Fig. 8  Performance of machine learning models as measured by area under the ROC curve (AUROC) of A Hx of adenoma vs no Hx of CRN, B 
Hx of CRC vs no Hx of CRN, and C LS vs. non-LS controls

Table 2  The training and testing AUC for models classifying LS-
CRC from LS-without CRC, LS-adenoma from LS-without CRC, and 
LS from non-LS controls

a Median (IQR)

Machine learning models Traininga Testinga

LS-CRC vs LS-without CRN
  Genus 0.68 (0.64, 0.71) 0.67 (0.5, 1.0)
  Genus + demographic 0.69 (0.64, 0.74) 0.83 (0.5, 1.0)

LS-adenoma vs LS-without 
CRN

  Genus 0.53 (0.48, 0.59) 0.50 (0.33, 0.67)
  Genus + demographic 0.55 (0.50, 0.63) 0.56 (0.44, 0.78)

LS vs non-LS controls
  Genus 0.69 (0.68, 0.70) 0.69 (0.66, 0.72)
  Genus + demographic 0.67 (0.67,0.70) 0.68 (0.66, 0.70)
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regularly associated with being anti-inflammatory includ-
ing Faecalibacterium and Romboutsia were also depleted 
in LS [28]. These findings could be due to the significant 
differences in age between these groups. Veillonella was 
enriched in both LS-without CRN and history of CRC 
compared to non-LS controls.

Because we observed more differences in microbiome 
composition comparing LS to non-LS controls than com-
paring LS groups to each other, it was unexpected that  
the machine learning models classifying (1) LS from non-
LS controls and (2) LS-CRC from LS-without CRN per-
formed equally well. The differences in microbiome com-
position between LS and non-LS controls might suggest 
that underlying microbiome composition of LS carriers is 
different potentially due to underlying genetic pathoge-
netic variants leading to changes in the colorectal epithe-
lium or mucosal immunity. We observed fewer differences 
in microbiome composition among LS groups according to 
history of CRN, but the LS-CRC microbiome was different 
enough from LS-without CRN to allow a machine model 
to distinguish between these two groups. The observed 
differences between LS-CRC and LS-without CRN and 
the ability of our machine learning model to decipher the 
two groups might also be due to history of colon resection, 
which was associated with similar differences in microbi-
ome composition. Conversely, we did not observe either 
global or taxon level differences between LS-adenoma and 
LS-without CRN and furthermore the model we built to 
classify these two groups did not perform well.

Other studies have similarly found that the microbiome 
compositions of subgroups of LS according to CRN his-
tory were like each other but different compared to the 
microbiome composition of non-LS controls. Mori et al. 
did not observe a difference between LS with CRC and 
LS with endometrial cancer (GC) but noted a statistically 
significant difference in the community structure between 
non-LS controls compared to LS. The authors hypothe-
sized there might be an underlying fecal microbiota pat-
tern associated with LS [16]. Similarly, Lu et al. found no 
difference in microbiome composition among LS carriers 
with and without cancer, but observed that LS carriers 
were enriched in B. fragilis and Parabacteroides dista-
sonis, and Pseudomonadaceae family compared to non-LS 
controls [17]. Ferrarese et al. found stool microbiome from 
LS carriers was enriched in Bacteroidetes and Proteobac-
teria and depleted in in the Firmicutes and Ruminococ-
caceae compared to non-LS controls [18].

Fewer studies have noted differences in microbiome com-
position among patients with LS with adenomas and CRC 
compared to LS with no CRN. Gonzalez et al. found non-
significant difference in several genera when they compared 
LS with cancer to LS without cancer, but sample size was 
very limited (n = 8) [29]. In the largest study to date, Yan 

et al. found that Clostridiaceae was depleted and Desulfovi-
brio was enriched in LS with baseline adenomas compared 
to no adenomas at baseline. They also observed that history 
of surgery was the most significant contributor to differences 
in microbiome composition [15].

Only one other study explored whether different LS path-
ogenic variants were characterized by different gut microbial 
populations. Yan et al. found that MLH1 and MSH2 muta-
tion carriers were depleted in Clostridiales and MLH1 were 
enriched in Blautia and Oscillospira [15]. We found that 
MLH1, MSH2, and MSH6 were depleted in Bifidobacterium 
while MLH1 and MS2 were enriched in Actinomyces and 
MSH2 was enriched in Streptococcus compared to PSM2. As 
noted above, we found similar differences in Streptococcus 
and Actinomyces when we evaluated by history of surgery. 
Post-surgical anatomy may also be confounding the associa-
tion between LS pathogenic variant and microbiome compo-
sition as individuals with MLH1 and MSH2 were more likely 
to be diagnosed with cancer and require curative colorectal 
surgery compared to PSM2.

While correlation studies in humans have not yet pro-
vided evidence that microbiome contribute to cancer devel-
opment in LS, LS animal models provide evidence that the 
microbiome may drive carcinogenesis in LS. A study con-
ducted in a MSH2 Lynch mouse model  (APCMin/MSH2−/−) 
demonstrated that bacterial-derived butyrate might drive 
hyperproliferation in MMR-deficient cecal epithelial cells 
marked by deregulated beta-catenin activity [30]. By treating 
these mice with antibiotics or a diet low in carbohydrates, 
the study authors reduced both butyrate levels and the total 
number of polyps by 75%. This finding may explain the 
lack of any protective effect observed in LS carriers rand-
omized to resistant starch despite increasing their levels of 
butyrate concentration in the CAPP2 randomized control 
trial in contrast to the protective effect observed in sporadic 
CRC [31]. Another MSH2 knockout mouse model exposed 
to conventional microbiome exhibited increased epithelial 
turnover rates, increased rate of spontaneous mutations in 
MSH2-deficient crypts, and increased microsatellite insta-
bility compared to specific pathogen free (SPF mice) [32]. 
The authors hypothesized that bacterial presence in MMR-
deficient crypts drives epithelial turnover and subsequent 
mutations in DNA.

One strength of this study is that it is the largest study 
of LS to include non-LS controls for comparisons. Prior 
studies comparing LS patient to non-LS controls were 
based on small cohorts with less than 10 subjects in each 
groups making their findings subject to internal and exter-
nal validity issues. Our similar findings of notable differ-
ences between LS and controls with a larger sample size 
strengthen and confirm this repeated finding.

There were several limitations to our study. The con-
trols were significantly younger compared to patients with 
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LS, which might confound the differences in microbiome 
composition we observed between these two groups. Age 
is an important contributing factor in microbiome varia-
tion. Furthermore, the study populations were female pre-
dominant, and therefore, our results might not be general-
izable. Additionally, we did not collect stool prospectively 
and our investigation of differences in microbiome com-
position within LS carriers was based on prior diagnoses 
of colorectal adenomas and cancer. The stool microbiome 
is more significant and informative if collected prior to 
adenoma detection as our hypothesis is that microbiome 
composition may lead to the risk of polyp and cancer for-
mation. As this was a cross-sectional study, stool collected 
might not accurately reflect the composition at the time 
adenoma or cancer was forming. Another limitation was 
that the sample size was still too small to do multigroup 
analyses and adjust for covariates. Larger studies with 
prospective stool collection are needed to untangle how 
microbiome protects against or contributes to carcinogen-
esis in LS.

In conclusion, we found significant global and specific 
differences in the microbiome composition when we com-
pared individuals with LS to non-LS controls. This finding 
confirms observations from prior studies done with signif-
icantly smaller sample sizes. Further studies investigating 
how differences in the epithelial biology and immunology 
between LS carriers and non-LS controls might shape dif-
ferences in the microbiome composition are warranted. We 
found no global differences and few specific taxa differ-
ences when we compared LS-CRC to LS-without CRN. 
While animal models suggest microbiome may contribute 
to colorectal carcinogenesis, no clinical studies in people 
have documented an association between CRC and micro-
biome in LS. A longitudinal collection of stool microbi-
ome in LS to detect the contribution of stool microbiome 
composition to carcinogenesis in LS would be invaluable 
to investigating the role of microbiome composition in 
CRC development.
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