
Toward a Census of Bacteria in Soil
Patrick D. Schloss¤, Jo Handelsman*

Department of Plant Pathology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America

For more than a century, microbiologists have sought to determine the species richness of bacteria in soil, but the
extreme complexity and unknown structure of soil microbial communities have obscured the answer. We developed a
statistical model that makes the problem of estimating richness statistically accessible by evaluating the characteristics
of samples drawn from simulated communities with parametric community distributions. We identified simulated
communities with rank-abundance distributions that followed a truncated lognormal distribution whose samples
resembled the structure of 16S rRNA gene sequence collections made using Alaskan and Minnesotan soils. The
simulated communities constructed based on the distribution of 16S rRNA gene sequences sampled from the Alaskan
and Minnesotan soils had a richness of 5,000 and 2,000 operational taxonomic units (OTUs), respectively, where an
OTU represents a collection of sequences not more than 3% distant from each other. To sample each of these OTUs in
the Alaskan 16S rRNA gene library at least twice, 480,000 sequences would be required; however, to estimate the
richness of the simulated communities using nonparametric richness estimators would require only 18,000 sequences.
Quantifying the richness of complex environments such as soil is an important step in building an ecological
framework. We have shown that generating sufficient sequence data to do so requires less sequencing effort than
completely sequencing a bacterial genome.
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Introduction

Enumerating the human population of a country or region
through a census is an ancient problem that is complicated by
the challenges inherent in accurately representing a large and
often inaccessible population. The same issues manifest in
censuses of microbial communities, but are intensified by
greater complexity and methodological challenges. Although
a complete census of a country is theoretically possible, it is
currently impractical to survey all 109 bacterial cells in a gram
of soil [1], making a sample-based census the best option for
estimating richness—the number of bacterial taxa in soil. To
do so accurately requires a reliable means to access the
bacteria, a reasonable definition of ‘‘species,’’ and a robust
description of the frequency distribution of the species. Just
as a country’s census describes a fundamental property of
that country, an environment’s richness is the most funda-
mental descriptor of community structure, and patterns of
richness can be correlated with an environment’s geography,
productivity, extremeness, climate change, and degree of
isolation [2]. Our inability to estimate richness impedes
investigation of the effects of soil chemistry, pollution, and
land use on the soil microbial community.

The method used to access the microbial biodiversity
assuredly shapes the outcome of a census. Culture-based
methods suggest that a gram of soil contains fewer than 100
species [3], but these are undoubtedly underestimates because
multiple lines of evidence indicate that fewer than 1% of the
species in soil are presently culturable [4]. Culture-independ-
ent methods include DNA reassociation and 16S rRNA gene
sequencing, which have provided conflicting results due to
the problems inherent in defining a species and in estimating
the frequency distribution of species in soil. Depending on
how the data are analyzed, DNA reassociation experiments
produce richness estimates ranging from 4,000 to 10,000,000
genome equivalents per 10 or 30 g of soil [5–11]. The
variability in these estimates stems from application of
different assumptions to reassociation curves, and their

interpretation is complicated by the lack of controls that
account for intergenomic variation. Finally, DNA reassocia-
tion kinetics cannot be used to compare the membership of
different communities.
An alternative method relies on analysis of 16S rRNA gene

sequences amplified from soil by PCR [12]. The power of this
method lies in its use of the universal tool of bacterial
phylogeny and our ability to define operational taxonomic
units (OTUs) based on the relatedness of sequences. Estimates
of richness have been obtained through parametric or
nonparametric empirical models of species frequency dis-
tribution to produce richness estimates between 590 and
100,000 species per gram of soil [13–15]. Parametric models
have assumed that the incidence of different species follows a
lognormal [13], Pareto [16], or uniform distribution [14].
Although the lognormal model has been useful as a ‘‘null
model’’ [17], data are insufficient from any soil community to
support reliance on a lognormal or Pareto frequency
distribution, and we are unaware of any dataset that supports
a uniform frequency distribution [18]. Analyses based on
nonparametric models, which do not assume a defined
frequency distribution but are based on the frequency of
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abundant community members [19–21], estimate a minimum
richness of 590 species based on 16S rRNA gene sequences in
a Scottish soil [15,22]. Although the extent of the universality
of phylum-specific PCR primers and potential toxicity of
some fragments is not well understood, these effects would
reduce the perceived richness. Finally, use of 16S rRNA gene
sequences permits direct comparisons of the membership of
different communities.

Previously, Dunbar et al. [17] modeled the frequency
distribution of 16S rRNA genes in four Arizonan soil
communities by fitting a lognormal frequency distribution.
Using 200 16S rRNA gene fragments from each soil
community, this analysis estimated that 10 g of soil contained
between 3,000 and 8,000 16S rRNA gene restriction fragment
length polymorphism (RFLP) profiles. Previous analysis using
the same four libraries found that the similarity of 16S rRNA
gene sequences with the same RFLP profile ranged between
52.2% and 99.9% [3], which makes interpretation of the
analysis difficult. We were interested in developing this
approach further by analyzing large 16S rRNA gene sequence
collections that had not been initially screened by RFLP
profiling. Our approach was to find a simulated community
whose samples resembled our sampling of 1,033 16S rRNA
genes from a clone library constructed from a single 0.5-g
sample of Alaskan soil. For the purposes of comparison, we
also analyzed two large 16S rRNA gene sequence collections
that were recently published as part of a soil metagenomic
sequencing project, but were not characterized beyond their
phylogenetic affiliation [23].

Results

Estimating the Bacterial Richness in the Alaskan Soil
Library

The aim of this work was to estimate the taxonomic
richness in an Alaskan soil sample through a library of 16S
rRNA gene sequences derived from the sample. We assigned
more than 92% of the 1,033 Alaskan 16S rRNA gene
sequences to seven phyla, including the Proteobacteria
(48.6%), Acidobacteria (15.3%), Bacteroidetes (9.3%), Actino-
bacteria (5.8%), Gemmimonas (5.7%), Planctomycetes (4.0%),
and Verrucomicrobia (4.0%); the remaining sequences

clustered within 12 phylum-level delineations, four of which
had no cultured members (Figure 1). Each phylum was
sampled at least twice, except for candidate phylum BD
Group and the phylum Chlamydiae, which were each
observed once.
We used furthest neighbor clustering to assign sequences to

OTUs based on the pairwise genetic distance between
sequences. Although controversial [24], Jukes-Cantor-cor-
rected distances less than 0.03 are considered to correspond
to a strain-level delineation, 0.03 to species, 0.05 to genus,
0.15 to class, and 0.30–0.40 to phylum [25–28]. Considering
potential intragenomic differences between copies of 16S
rRNA genes and errors due to sequencing and alignment
[29,30], the 0.03 cutoff is also a pragmatic choice since it
probably represents the most stringent OTU definition that is
practically obtainable using 16S rRNA genes. Since the
intragenomic distance between 16S rRNA gene sequences is
typically less than 0.03, at this distance, replicate 16S rRNA
gene sequences from the same genome would form a single
OTU.
To simplify the reporting of our results, OTUs will be

designated OTUx.xx, where the subscript represents the
maximum distance between any two sequences within that
OTU (Figure 2). In the Alaskan 16S rRNA gene sequence
collection containing 1,033 sequences, we observed 633
OTUs0.03. We observed 472 OTUs0.03 once and 94 OTUs0.03
twice (Figure 2A). The three most abundant OTUs0.03
affiliated with members of the phylum Gemmimonas (n ¼ 23
sequences in the OTU0.03 from 19 distinct primary sequen-
ces), Duganella sp. (n ¼ 17 sequences in the OTU0.03 from 13
distinct sequences), and Rhodoferax sp. (n¼17 sequences in the
OTU0.03 from 15 distinct sequences). These three OTUs0.03
were not observed in the Minnesotan sequence collection.
Since the most abundant OTU0.03 in the Alaskan 16S rRNA

gene library was observed only 23 times, we were unable to
obtain meaningful fits of parametric frequency distribution
models to the OTU0.03 frequency distribution [31]. Attempts
to identify parameters that would define simulated commun-
ities following either a Pareto or uniform frequency
distribution resembling the observed distribution were
unsuccessful. The predicted abundance of the most abundant

Figure 1. Phylum-Level Delineation of the 16S rRNA Gene Fragments in

Alaskan Soil

Gene fragments (n ¼ 1,033) were isolated and sequenced from an
Alaskan soil. Candidate phyla WCHB1, OP10, ACE, and BD Group have no
sequenced representatives.
DOI: 10.1371/journal.pcbi.0020092.g001
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Synopsis

Soil is more than dirt. It is the source and sink of nutrients, wastes,
pharmaceuticals, and energy required to make Earth supportive of
life—it is Earth’s most vital organ. Although we know a considerable
amount about the physical structure and chemistry of soil, there is a
glaring paucity of knowledge regarding the microbial component
responsible for its many functions. Over the past 100 years,
microbiologists have attempted to characterize the biodiversity of
microbial life in soil, and many had reached the unsatisfying
conclusion that bacteria may be too diverse to count. Schloss and
Handelsman have developed statistical models that they apply to
molecular data to predict that the richness of bacteria in 0.5-g soil
samples from Alaska and Minnesota were 5,000 and 2,000 species,
respectively. At the current level of sampling, approximately 20% of
the bacteria appear to be endemic to both soils. The enumeration
and description of these organisms points to the need and relative
ease of characterizing bacterial communities to identify the
organisms responsible for sustaining all of life.
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OTUs in the Pareto-distributed communities was too high,
and the abundance of the rarest OTUs was too low. We
successfully simulated the OTU0.03 frequency distribution
observed in the Alaskan 16S rRNA gene sequence collection
by altering the richness and evenness of random frequency
distributions using a truncated lognormal frequency distri-
bution (Table 1). The relative abundance of each OTU in the
simulated communities that followed the truncated lognor-
mal model was
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where Si is the ith OTU and Ni is the relative abundance of
individuals in that OTU. The maximum possible value of i is
the total number of OTUs in the community, ST. N1 is the
abundance of the most abundant OTU (Nmax), and NT is the
sum of all Ni values.

Next, we heuristically identified the normal mean (l ¼
6.000), standard deviation (r ¼ 3.020), and OTU0.03 richness
(ST ¼ 5,000) for a truncated lognormal distribution in which
the distribution of its samples resembled the distribution
observed in the Alaskan sequence collection (Figure 2A and
Table 1). Further confirmation for the plausibility of the
simulated community was obtained by comparing the
percentage of the total community represented by the most
abundant OTU (100 3 Nmax/NT) in the simulated community
(2.9%) to the value observed from the sequence collection
(2.2%). These values are comparable to the range 2.9%–8.3%
observed by Dunbar et al. [17], but are considerably higher
than the range 0.1%–1% suggested by Curtis et al. [13]. We
found that the reciprocal of the Simpson’s index (1/D) for the
simulated community was 288, which was similar to the value
observed for the sequence collection of 223. The values for 1/
D are considerably higher than the range 52–107 observed by
Dunbar et al. [17]. To sample every OTU in the Alaskan
simulated community twice with 95% confidence would
require sequencing 480,000 16S rRNA gene fragments, and
to observe 95% of the richness, 71,000 16S rRNA genes would
be required (Figure 3 and Table 1). To obtain an estimate of
the true richness using either the ACE or Chao1 non-
parametric richness estimator would require sampling 18,000
or 39,000 16S rRNA genes, respectively, which represented
sampling 65% and 85% of the true richness (Figure 3 and
Table 1).
Since we were unable to obtain a robust estimate of species

richness with our 16S rRNA gene sequence collection without
assuming some distribution a priori, we relaxed the OTU
definition to obtain a robust nonparametric richness esti-
mate. The OTU0.20 richness estimate collector’s curves began
to stabilize late in sampling (Figure 3). Although additional
sampling would improve the precision of the OTU0.20

richness estimate, the Chao1 (188.20, 95% confidence interval
[CI] 174–212), ACE (200, CI 181–234), and Jackknife (203, CI
184–222) estimates were similar.

Comparison of Alaskan and Minnesotan Soils Microbial
Communities
Recently, the microbial community of a Minnesota farm

soil was characterized by metagenomic (direct cloning and
analysis of DNA from a soil sample) and 16S rRNA gene
sequencing analyses [23]. The authors constructed two
separate 16S rRNA gene libraries by using a cell fractiona-
tion-based DNA isolation procedure, and sequenced 1,633
overlapping gene fragments from the two libraries [23,32]. We
reanalyzed their pooled sequence data to determine the
richness of the Minnesota farm soil and to determine the
degree of OTU membership that was conserved between the
Minnesotan and Alaskan soil communities.
Collector’s curves for the number of OTU0.03 observed and

estimated in the Minnesota soil library were flatter than the
Alaskan collector’s curves (Figure 4). In the Minnesotan
collection, the observed OTU0.03 richness was 767, and we
observed 477 OTUs0.03 once and 128 OTUs0.03 twice (Figure
2B). The nonparametric richness estimates were 1,647
(Chao1), 1,704 (ACE), and 2,248 (Jackknife); however, each
estimate continued to increase with sampling. The three
OTUs0.03 most frequently observed in the Minnesotan
sequence collection contained 37, 27, and 26 sequences, and
each clustered within the phylum Chloroflexi; no representa-

Figure 2. Rank Abundance Plot of the Alaskan and Minnesotan 16S rRNA

Gene Libraries

Alaskan (n ¼ 1,033) (A) and Minnesotan (n ¼ 1,633) (B) 16S rRNA gene
libraries are plotted and describe the distribution of the 16S rRNA genes
among OTUs defined as a group of sequences that are either identical or
no more than 3%, 10%, or 20% different.
DOI: 10.1371/journal.pcbi.0020092.g002
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tives of these OTUs0.03 were observed in the Alaskan sequence
collection.

We identified one simulated community with a truncated
lognormal distribution that had a richness of 2,000 (l¼ 8.000,
r¼3.813) whose samples resembled the distribution observed
in the Minnesotan sequence collection. The percentage of the
clones represented by the most abundant OTU0.03 was 2.3%,
and it was 3.9% in the simulated community. The simulated
community had a higher 1/D value than that observed from
the sequence data (311 versus 237). The Minnesotan
simulated community had a lower richness and more uniform
evenness than we observed for the Alaskan simulated
community. If the Minnesotan simulated community is a
true reflection of the OTU0.03 distribution, then we are 95%
confident that sequencing of 90,000 16S rRNA genes would
result in observing every OTU0.03 at least twice. Sequencing
16,000 16S rRNA gene fragments would allow us to observe
95% of the true richness. To obtain a nonparametric estimate
of richness through the ACE and Chao1 estimators, 2,000 and
5,500 16S rRNA gene sequences, respectively, would need to
be sequenced for the estimate’s CI to include 2,000; the CI for
the Jackknife estimator already includes 2,000. The sequenc-
ing of 2,000 and 5,500 16S rRNA genes would result in
observing 43.9% and 72.5% of the true richness, respectively.

It is difficult to determine whether the difference in
estimated richness between the Alaskan and Minnesotan
simulated communities was due to ecological differences or
differences in DNA extraction methods [33] or both. The
collector’s curve for the estimated fraction of the Minnesotan
library shared with the Alaskan library, 0.18 (standard error
[SE]¼ 0.07), indicated that this value is close to the true value
and that the fraction of the Alaskan library shared with the
Minnesotan library, 0.17 (SE ¼ 0.06), continued to increase
with additional sampling (Figure 5A). Our observation that
18% of the sequences in the Minnesotan library belonged to
OTUs0.03 shared with the Alaskan collection indicates either
that a large fraction of these OTUs0.03 are endemic to
different soils or that the different DNA extraction proce-

dures preferentially lysed a subset of the OTU0.03 member-
ship, or both.
Similar to our analysis of the Alaskan 16S rRNA library,

when we relaxed the OTU definition to analyze the OTU0.20

richness of the Minnesotan 16S rRNA membership, we
observed richness estimates that were not sensitive to further
sampling. The terminal Chao1 (165, CI 151–197), ACE (169,
CI 156–196), and Jackknife (174, CI 158–190) estimates were
similar; this is approximately 85% of the OTU0.20 richness
observed in the Alaskan 16S rRNA library. The fraction of
sequences from the Minnesotan library that belonged to
OTUs0.20 shared between the two libraries was 0.86 (SE¼0.10)
and the fraction of sequences from the Alaskan sequences
that belonged to OTUs0.20 shared between the two libraries
was 0.88 (SE¼ 0.07) (Figure 5B). At this point in sampling, it
was not possible to conclude with statistical confidence that
the OTU0.20 memberships were significantly different, since
both CIs included 1.00; however, we expect further sampling
to make the estimates more precise.

Discussion

In the 20th century, the view of soil microbial ecology
shifted from being described by Selman Waksman as a ‘‘clear
picture’’ [34] to E. O. Wilson’s pronouncement that its
diversity is ‘‘beyond practical calculation’’ [35]. We have
shown that neither view is wholly correct, but that a confident
estimate of bacterial richness is attainable using a set of
parameters that have a reasonable biological basis. We have
shown that it is possible to obtain an OTU0.03 richness
estimate for soil for considerably less effort than is required
to shotgun sequence a bacterial genome (assuming ;100,000
sequence reads per genome and one to five reads for each of
17,000 16S rRNA gene fragments). Determining the richness
of specific phylogenetic groups using lineage-specific PCR
primers would further reduce the required effort.
Our analysis can also be applied to guide the design of

functional and sequence-based metagenomics projects [36].

Table 1. Example of Simulation Results for Lognormal and Uniformly Distributed Communities with a Richness of 5,000

NT/Nmax Mean (l) Standard Deviation (r) 1/D Sampling Effort Required for Census

Complete 95% of Richness Chao1 Estimator ACE Estimator

10 6.000 4.901 64 560,000 85,000 42,000 17,000

8.000 6.146 66 475,000 74,000 38,000 13,000

10.00 7.189 67 450,000 70,000 35,000 12,000

35 6.000 3.020 288 480,000 71,000 39,000 18,000

8.000 3.813 373 305,000 48,000 26,000 9,000

10.00 4.489 419 203,000 43,000 20,000 8,000

100 6.000 2.481 541 385,000 70,000 40,000 20,000

8.000 3.153 891 260,000 41,000 21,000 7,000

10.00 3.719 1,124 200,000 33,000 16,000 5,000

1,000 8.000 2.119 2,680 185,000 29,000 16,000 8,000

10.00 2.759 3,175 140,000 23,000 11,000 6,000

12.00 3.232 3,484 120,000 21,000 8,000 5,000

5,000 Uniform 5,000 75,000 15,000 150 110

The sampling effort represents the size of sample necessary to observe every taxon twice, to observe 95% of the taxa, or for the CI of the Chao1 and ACE richness estimators to include the
true richness. For each distribution, 1,000 random communities were drawn. Simulation results were positively correlated with richness. NT represents the total number of individuals in a
community and Nmax represents the abundance of the most abundant member in the community, and their ratio represents the reciprocal of the probability observed at the distribution’s
mode. The reciprocal of the Simpson’s Index (1/D) represents the number of uniformly abundant OTUs needed to observe the same level of diversity found in the community.
DOI: 10.1371/journal.pcbi.0020092.t001
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Tringe et al. [23] estimated that more than 2 3 109 bp of
sequence from 3 3 106 sequence reads would be necessary to
obtain 8-fold sequence coverage of the most abundant species
in their soil sample assuming a genome size of 6 Mbp. To
sequence 8-fold coverage of the most abundant OTU0.03 from
the simulated Alaskan soil community, approximately 450
genome equivalents, or 3 3 109 bp, would need to be
sequenced from the Alaskan soil. To sequence 8-fold coverage
of the ten most abundant OTUs0.03 from the simulated
Alaskan soil community, approximately 1,600 genome equiv-
alents, or 1010 bp, would need to be sequenced. Although this
amount of DNA may be beyond our current sequencing
capacity, the 1010 bp is approximately the content of a
275,000-clone fosmid library. Such a library could be easily
constructed and would be useful for functional metagenomic
approaches. Although not currently feasible, sequencing 8-
fold coverage of every OTU0.03 in the Alaskan soil meta-
genome would require sequencing 950,000 genome equiv-
alents or 6 3 1012 bp of DNA. Although PCR bias may affect
the true community distribution, these values are a helpful
guide when designing metagenomics-based experiments. For
some groups of organisms, the 3% cutoff between 16S rRNA
gene sequences has been found to correlate with 70%
similarity between genome sequences; therefore, it is unclear
how many contigs would assemble for the predicted level of
sequencing effort given the substantial intragenomic varia-
tion that may exist between members of the same OTU0.03.
Estimating richness does not provide the identity of each

bacterial type; in the Alaskan soil we studied, identifying
every one of the 5,000 different types of bacteria would
require sampling more than 480,000 sequences. Furthermore,
our analysis assumes an operational species definition of a
group of 16S rRNA sequences that are no more than 3%
different from one another. Among the members of a single
OTU, there is undoubtedly considerable phenotypic and
genomic diversity that is not reflected by 16S rRNA sequences
[24]. Our attempt to perform a census of the number of
bacteria in a gram of soil provides a guidepost from which we
can begin to assess the effects of environmental perturbations
on community composition, diversity, evenness, and richness.
Moreover, an accurate census would quantify the part of the
microbial community that is not accounted for in the current
models of community structure and function. In the Alaskan
sequence collection, two sequences belonging to the sparsely
sampled candidate phylum ACE were found only after
sampling 832 sequences. We suspect that members of many
poorly sampled candidate phyla are rare members in micro-
bial communities [37], but may play significant functional
roles in the microbial community. Although a reliable
estimate of richness will inform the development of a

Figure 3. Estimating the Richness of Taxa in the Simulated Alaskan Soil

Community

(A) Average number of taxa observed and estimated richness for the
simulated Alaskan soil community (ST¼ 5,000, l¼ 6.000, and r¼ 3.020)
over the course of randomly sampling 480,000 individuals.
(B–D) The distribution of 16S rRNA sequences obtained from Alaskan soil
falls within the 95% CI that would have been obtained for the
distribution derived from sampling 1,033 individuals from this simulated
community as measured using the observed (B) and estimated—Chao1
(C) and ACE (D)—richness. The thin blue lines in (B), (C), and (D) represent
the 95% CIs for each metric using the simulated Alaskan soil community.
DOI: 10.1371/journal.pcbi.0020092.g003
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conceptual framework for describing the functional biology
of the soil microbial community, we will not know the texture
and composition of that richness until we have exhaustively
sampled and identified every member of the community.

Materials and Methods

Clone library construction, sequencing, and analysis. We obtained
a soil core from the Bonanza Creek Long-Term Ecological Research
site approximately 30 km southwest of Fairbanks, Alaska, United
States (648 489 N, 1478 529 W) on the site designated BP-1 on an island
in the Tanana River [38]. The L1A 16S rRNA gene library was
constructed using a single 0.5-g sample of soil. The Bio101 soil DNA
kit (Bio101, Irvine, California, United States) was used to extract and
partially purify genomic DNA and the sample was further purified
using a silica matrix (ExpressMatrix; Bio101) until it was suitable for
PCR amplification.

16S rRNA genes were amplified in a single reaction by PCR using
primers 27f (AGRGTTTGATYMTGGCTCAG) and 1492r (GGY-
TACCTTGTTACGACTT) and the products were purified by gel
extraction (Qiaex II; Qiagen, Valencia, California, United States).
Purified PCR products were ligated into the pGEM-T TA cloning
vector as described by the manufacturer (Promega, Madison,
Wisconsin, United States) and electroporated into E. coli (DH5a).
Positive transformants were inoculated overnight into LB with
ampicillin (100 lg/ml) and the culture was used as template for
PCR using the universal M13f and M13r vector primers. These PCR
products were purified using AmpPure (Agencourt Bioscience,
Beverly, Massachusetts, United States) and sequenced using the 27f
and 787r (CTACCRGGGTATCTAAT) primers. If the 787r primer did
not produce quality sequence, we used either the M13f or the M13r

Figure 4. Estimating the Richness of Taxa in the Simulated Minnesotan

Soil Community

(A) Average number of taxa observed and the estimated richness for the
simulated Minnesotan soil community (ST ¼ 2,000, l ¼ 8.000, and r ¼
3.813) over the course of randomly sampling 100,000 individuals.
(B–D) The distribution of 16S rRNA gene sequences obtained from the
Minnesotan soil falls within the 95% CI that would have been obtained
for the distribution derived from sampling 1,633 individuals from this
simulated community as measured using the observed (B) and
estimated—Chao1 (C) and ACE (D)—richness. The thin blue lines in (B),
(C), and (D) represent the 95% CI for each metric using the simulated
Minnesotan soil community.
DOI: 10.1371/journal.pcbi.0020092.g004

Figure 5. Similarity of Alaskan and Minnesotan Soil Microbial Communities

Collector’s curves describing the effect of sampling on the estimated
fraction of sequences from the Minnesotan (red lines) and Alaskan (blue
lines) libraries belonging to shared OTUs0.03 and OTUs0.20.
DOI: 10.1371/journal.pcbi.0020092.g005
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primer for sequencing. Sequencing reactions were performed using
BigDye version 3.1 (Applied Biosystems, Foster City, California,
United States) and were analyzed at the University of Wisconsin-
Madison biotechnology center. All clones had 2-fold sequencing
coverage for the first approximately 700 bp of the 16S rRNA gene.

Sequence contigs were constructed using STADEN [39] and
aligned using ARB [40] with a reference database of more than
16,000 sequences longer than 1 kb. Putative chimeric sequences were
identified using Bellerophon [41] and were further screened using
CHIMERA_CHECK [42], partial treeing, and comparing the se-
quence alignment to predicted secondary structure to detect changes
in helical base pairing and nucleotide signatures [43]. Phylogenetic
placement of the 1,033 sequences was determined by identifying the
phylum to which each sequence showed affinity after adding
sequences to the database tree using the parsimony algorithm
implemented in ARB with a 50% consensus mask.

We also obtained (from Susannah Green Tringe) two 16S rRNA
gene sequence collections (NAKYG ¼ 875 sequences; NAKYH ¼ 758
sequences) constructed using a single 0.5-g sample of Minnesotan
(Waseca County, Minnesota, United States [23]) farm soil. The
original soil genomic DNA was obtained by cell fractionation
followed by enzymatic and chemical extraction of the DNA [23,32].
Since our preliminary analysis using a nonparametric estimator of
the fraction of shared OTUs [44] showed that the two Minnesota soil
libraries harbored more than 68% of each others’ OTU0.03 member-
ship, and they were made from the same soil sample but different
PCR reactions, we pooled the 1,633 sequences into a single dataset.
For direct comparison, the Minnesotan and Alaskan sequence
collections were realigned using the NAST aligner [45] at the
greengenes Web site (http://greengenes.lbl.gov), and the nucleotide
sites between positions 150 and 700 (E. coli numbering) were used in
subsequent analyses.

Community analyses. To describe the community structure of each
soil we used DOTUR’s implementation of the furthest neighbor
algorithm [18] to assign sequences to OTUs after exporting a Jukes-
Cantor corrected distance matrix constructed in ARB using
unmasked sequences. Output files from DOTUR were used to
calculate collector’s curves for the nonparametric estimators of the
fraction of sequences from one library that affiliated with the OTUs
shared between the libraries [44].

Model community analysis. Using a truncated lognormal, Pareto,
or uniform distribution, we were able to construct model commun-
ities in which the probability of drawing an individual species
followed a defined distribution. To identify the most appropriate
truncated lognormal distribution that described the observed data,
we first selected reasonable values for l between 6.000 and 12.00 and
ST between 1,000 and 10,000. Next, using Equation 1, we identified
values of r that would yield NT/Nmax values of 10, 35, 40, 45, 50, 100,
and 1,000. NT/Nmax is the reciprocal of the probability observed at the
distribution’s mode, where NT represents the total number of
individuals in a community and Nmax represents the abundance of
the most abundant member in the community. The values of NT/Nmax
shown in Table 1 were selected because they fell within the range
suggested by Curtis et al. [13] for microbial communities and because
they resembled the frequency data observed from the Alaskan soil

collection. For a given value of NT/Nmax, increasing l increased the
value of the reciprocal of the Simpson’s index (1/D). 1/D represents
the number of uniformly abundant OTUs needed to observe the same
level of diversity found in the community. Using these parameters, we
drew random values from the desired lognormal distribution by first
drawing a random normal variable with mean l and standard
deviation r. Random lognormal variables were then obtained by
determining the integer value of eX, where X is the value of the
random normal variable. Values larger than ST were discarded,
resulting in random variables drawn from a truncated lognormal
distribution. Random variables drawn from either Pareto or
uniformly distributed communities were done in an analogous
manner.

As random values were generated, we constructed collector’s
curves for the observed richness and the full bias-corrected Chao1
[19], ACE [20], and interpolated Jackknife [21] nonparametric
estimators. The heuristic search did not include the Jackknife
estimator because the estimates were highly variable and uninforma-
tive. As measures of diversity, we determined 1/D and the longest
string where duplicate members of the same taxa were not observed.
We determined the CI for each metric as a function of sampling
effort by constructing 1,000 model communities for each set of model
parameters. The sampling of the truncated lognormal distributions
and parameter calculation was performed using a Cþþ computer
program that we wrote. If the collector’s curve for the sampling of the
Alaskan or Minnesotan 16S rRNA sequence collections crossed the CI
for any parameter, the simulated community was rejected.

Supporting Information

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov) accession numbers of the
Alaskan 16S rRNA gene sequences are AY988608 through AY989640.
All sequence alignments are available from the authors’ Web site
(http://www.plantpath.wisc.edu/fac/joh/soil_census_data.html).
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