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Machine learning classification by fitting amplicon sequences to 
existing OTUs
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ABSTRACT The ability to use 16S rRNA gene sequence data to train machine learning 
classification models offers the opportunity to diagnose patients based on the composi
tion of their microbiome. In some applications, the taxonomic resolution that provides 
the best models may require the use of de novo operational taxonomic units (OTUs) 
whose composition changes when new data are added. We previously developed a new 
reference-based approach, OptiFit, that fits new sequence data to existing de novo OTUs 
without changing the composition of the original OTUs. While OptiFit produces OTUs 
that are as high quality as de novo OTUs, it is unclear whether this method for fitting new 
sequence data into existing OTUs will impact the performance of classification models 
relative to models trained and tested only using de novo OTUs. We used OptiFit to cluster 
sequences into existing OTUs and evaluated model performance in classifying a dataset 
containing samples from patients with and without colonic screen relevant neoplasia 
(SRN). We compared the performance of this model to standard methods including de 
novo and database-reference-based clustering. We found that using OptiFit performed as 
well or better in classifying SRNs. OptiFit can streamline the process of classifying new 
samples by avoiding the need to retrain models using reclustered sequences.

IMPORTANCE There is great potential for using microbiome data to aid in diagnosis. A 
challenge with de novo operational taxonomic unit (OTU)-based classification models is 
that 16S rRNA gene sequences are often assigned to OTUs based on similarity to other 
sequences in the dataset. If data are generated from new patients, the old and new 
sequences must be reclustered to OTUs and the classification model retrained. Yet there 
is a desire to have a single, validated model that can be widely deployed. To overcome 
this obstacle, we applied the OptiFit clustering algorithm to fit new sequence data to 
existing OTUs allowing for reuse of the model. A random forest model implemented 
using OptiFit performed as well as the traditional reassign and retrain approach. This 
result shows that it is possible to train and apply machine learning models based on OTU 
relative abundance data that do not require retraining or the use of a reference database.

KEYWORDS microbiome, microbial ecology, bioinformatics, machine learning, 
diagnostics

T here is increasing interest in training machine learning models to diagnose diseases 
such as Crohn’s disease and colorectal cancer using the relative abundance of 

clusters of similar 16S rRNA gene sequences (1, 2). These models have been used to 
identify sequence clusters that are important for distinguishing between individuals 
from different disease categories (3). There is also an opportunity to train models and 
apply them to classify samples from new individuals. For example, a model for colorectal 
cancer could be trained, “locked down,” and applied to samples from new patients.

To apply these models to new samples, the composition of the clusters would need 
to be independent of the new data. For example, amplicon sequence variants (ASVs) are 

Month XXXX  Volume 0  Issue 0 10.1128/msphere.00336-23 1

Editor Susannah Green Tringe, E O Lawrence 
Berkeley National Laboratory, Berkeley, California, 
USA

Address correspondence to Patrick D. Schloss, 
pschloss@umich.edu.

The authors declare no conflict of interest.

See the funding table on p. 6.

Received 21 June 2023
Accepted 13 July 2023
Published 24 August 2023

Copyright © 2023 Armour et al. This is an open-
access article distributed under the terms of the 
Creative Commons Attribution 4.0 International 
license.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sp
he

re
 o

n 
28

 A
ug

us
t 2

02
3 

by
 1

41
.2

14
.1

7.
24

2.

https://crossmark.crossref.org/dialog/?doi=10.1128/mSphere00336-23&domain=pdf&date_stamp=2023-08-24
https://doi.org/10.1128/msphere.00336-23
https://creativecommons.org/licenses/by/4.0/


defined without consideration of sequences in other samples, phylotypes are defined 
by clustering sequences that have the same taxonomy (e.g., to the same family) when 
classified using a taxonomy database, and closed reference operational taxonomic units 
are defined by mapping sequences to a collection of reference OTUs. In contrast, de 
novo approaches cluster sequences based on their similarity to other sequences in the 
dataset and can change when new data are added. Although it would be preferable 
to select an approach that generates stable clusters, there may be cases where OTUs 
generated by a de novo approach outperform those of the other taxonomic levels. In fact, 
we recently trained machine learning models for classifying patients with and without 
screen relevant neoplasias (SRNs) in their colons and found that OTUs generated de novo 
using the OptiClust algorithm performed better than those generated using ASVs or at 
higher taxonomic levels (4).

It could be possible to construct reference OTUs and map new sequences to those 
OTUs to attain similar performance as was seen with the OptiClust-generated OTUs. The 
traditional approach to reference-based clustering of sequences to OTUs has multiple 
drawbacks and does not produce clusters as good as those generated using OptiClust 
(5). Sovacool et al. recently described OptiFit, a method for fitting new sequence 
data into existing OTUs that overcomes the limitations of traditional reference-based 
clustering (5). OptiFit allows researchers to fit new data into existing OTUs defined from 
the same dataset resulting in clusters that are as good as if they had all been clustered 
with OptiClust. We tested whether OptiClust-generated OTUs could be used to train 
models that were then used to classify held out samples after clustering their sequences 
to the model’s OTUs using OptiFit.

To test how the model performance compared between using de novo and reference-
based clustering approaches, we used a publicly available dataset of 16S rRNA gene 
sequences from stool samples of healthy subjects (n = 226) as well as subjects with 
screen relevant neoplasia consisting of advanced adenoma and carcinoma (n = 229) 
(1). For the de novo workflows, the 16S rRNA sequence data from all samples were 
clustered into OTUs using the OptiClust algorithm in mothur (6) and the VSEARCH 
algorithm used in QIIME2 (7, 8). For both algorithms, the resulting abundance data 
was then split into training and testing sets, where the training set was used to tune 
hyperparameters and ultimately train and select the model. The model was applied to 
the testing set, and the performance was evaluated (Fig. 1A). For traditional reference-
based clustering (database-reference-based), we used OptiFit to fit the sequence data 
into OTUs based on the commonly used Greengenes reference database. To compare 
with another commonly used method, we also used VSEARCH to map sequences to 
reference OTUs from the Greengenes database with the parameters used by QIIME2. We 
used the Greengenes database since it has reference OTUs for use with VSEARCH and 
prior analysis demonstrated that closed-reference OTU clustering using the Greengenes 
reference produced higher quality OTUs and recruited a higher fraction of reads than the 
SILVA or RDP references (5). Again, the data were then split into training and testing sets, 
hyperparameters tuned, and performance evaluated on the testing set (Fig. 1B). In the 
OptiFit self-reference workflow (self-reference-based), the data were split into a training 
and a testing set. The training set was clustered into OTUs and used to train a classifica
tion model. The OptiFit algorithm was used to fit sequence data of samples not part of 
the training data into the training OTUs and classified using the best hyperparameters 
(Fig. 1C). For each of the workflows, the process was repeated for 100 random splits of 
the data to account for variation caused by the choice of the random number generator 
seed.

We first examined the quality of the resulting OTU clusters from each method using 
the Matthews correlation coefficient (MCC). MCC is an objective metric used to measure 
OTU cluster quality based on the similarity of all pairs of sequences and whether they are 
appropriately clustered or not (9). We expected the MCC scores produced by the OptiFit 
workflow to be similar to that of de novo clustering using the OptiClust algorithm. In the 
OptiFit workflow, the test data were fit to the clustered training data for each of the 100 
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data splits resulting in an MCC score for each split of the data. In the remaining work
flows, the data were only clustered once and then split into the training and testing sets 
resulting in a single MCC score for each method. Indeed, the MCC scores were similar 
between the OptiClust de novo (MCC = 0.884) and OptiFit self-reference workflows 
(average MCC = 0.879, standard deviation = 0.002). Consistent with prior findings, the 
reference-based methods produced lower MCC scores (OptiFit Greengenes MCC = 0.786; 
VSEARCH Greengenes MCC = 0.531) than the de novo methods (OptiClust de novo MCC = 
0.884; VSEARCH de novo MCC = 0.641) (5). Another metric we examined for the OptiFit 
workflow was the fraction of sequences from the test set that mapped to the reference 
OTUs. Since sequences that did not map to reference OTUs were eliminated, if a high 
percentage of reads did not map to an OTU we expected this loss of data to negatively 
impact classification performance. We found that loss of data were not an issue since on 
average 99.8% (standard deviation = 0.7%) of sequences in the subsampled test set 
mapped to the reference OTUs. This number is higher than the average fraction of reads 
mapped in the OptiFit Greengenes workflow (mean = 96.8% and standard deviation = 
3.5%). These results indicate that the OptiFit self-reference method performed as well as 
the OptiClust de novo method and is better than using an external database.

We next assessed model performance using OTU relative abundances from the 
training data from the workflows to train a model to predict SRNs and used the model on 
the held-out data. Using the predicted and actual diagnosis classification, we calculated 
the area under the receiver operating characteristic curve (AUROC) for each data split. 
During cross-validation (CV) training, the performance of the OptiFit self-reference and 
OptiClust de novo models were not significantly different (P-value = 0.066; Fig. 2A), while 
performance for both VSEARCH methods was significantly lower than the OptiClust 
de novo, OptiFit self, and OptiFit Greengenes methods (P-values < 0.05). The trained 
model was then applied to the test data classifying samples as either control or SRN. 
The VSEARCH Greengenes method performed slightly worse than the OptiClust de novo 
method (P-value = 0.030). However, the performance on the test data for the OptiClust 
de novo, OptiFit Greengenes, OptiFit self-reference, and VSEARCH de novo approaches 
was not significantly different (P-values > 0.05; Fig. 2B and C). These results indicate that 
new data could be fit to existing OTU clusters using OptiFit without impacting model 
performance.

FIG 1 Overview of clustering workflows. The de novo and database-reference-based workflows were conducted using two approaches: OptiClust with mothur 

and VSEARCH as is used in the QIIME pipeline.
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Random forest machine learning models trained using OptiClust-generated OTUs and 
tested using OptiFit-generated OTUs performed as well as a model trained using entirely 
de novo OTU assignments. A potential problem with reference-based clustering methods 
is that sequences that do not map to the reference OTUs are discarded, resulting in 
a possible loss of information. However, we demonstrated that the training samples 
represented the most important OTUs for classifying samples. Missing important OTUs 
is more of a risk when using a database-reference-based method since not all environ
ments are well represented in public databases. Despite this and the lower quality OTUs, 
the database-reference-based approach performed as well as the models generated 
using OptiFit. This likely indicates that the sequences that were important to the model 
were well characterized by the Greengenes reference OTUs. However, a less well-studied 
system may not be as well characterized by a reference database that would make the 
ability to utilize one’s own data as a reference an exciting possibility. Our results highlight 
that OptiFit overcomes a significant limitation with machine learning models trained 
using de novo OTUs. This is an important result for those applications where models 
trained using de novo OTUs outperform models generated using methods that produce 
clusters that do not depend on which sequences are included in the dataset.

MATERIALS AND METHODS

Dataset

Raw 16S rRNA gene sequence data from the V4 region were previously generated 
from human stool samples. Sequences were downloaded from the NCBI Sequence Read 
Archive (accession no. SRP062005) (1). This dataset contains stool samples from 490 
subjects. For this analysis, samples from subjects identified in the metadata as normal, 
high risk normal, or adenoma were categorized as “normal,” while samples from subjects 
identified as advanced adenoma or carcinoma were categorized as “screen relevant 
neoplasia”. The resulting dataset consisted of 261 normal samples and 229 SRN samples.

FIG 2 Model performance of the OptiFit self-reference workflow was as good or better than other methods. (A) Area under the receiver operating characteristic 

curve during cross-validation (train) for the various workflows. (B) AUROC on the test data for the various workflows. The mean and standard deviation of 

the AUROC are represented by the black dot and whiskers in panels A and B. The mean AUROC is printed below the points. (C) Averaged receiver operating 

characteristic (ROC) curves. Lines represent the average true positive rate for the range of false positive rates.
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Data processing

The full dataset was preprocessed with mothur (v1.47) (10) to join forward and 
reverse reads, merge duplicate reads, align to the SILVA reference database (v132) (11), 
precluster, remove chimeras with UCHIME (12), assign taxonomy, and remove non-bac
terial reads following the Schloss Lab MiSeq standard operating procedure described 
on the mothur website (https://mothur.org/wiki/miseq_sop/). One hundred splits of the 
490 samples were generated where 80% of the samples (392 samples) were randomly 
assigned to the training set and the remaining 20% (98 samples) were assigned to the 
test set. Using 100 splits of the data accounts for the variation that may be observed 
depending on the samples that are in the training or test sets. Each sample was in the 
training set an average of 80 times (standard deviation = 4.1) and the test set an average 
of 20 times (standard deviation = 4.1).

Reference-based workflows

1. OptiFit Self: The preprocessed data were split into the training and testing sets. 
The training set was clustered into OTUs using OptiClust, and then the test set 
was fit to the OTUs of the training set using the OptiFit algorithm (5). The OptiFit 
algorithm was run with the method open so that any sequences that did not 
map to the existing OTU clusters would form new OTUs. The data were then 
subsampled to 10,000 reads and any novel OTUs from the test set were removed. 
This process was repeated for each of the 100 splits resulting in 100 training and 
testing datasets.

2. OptiFit Greengenes: Reference sequences from the Greengenes database 
v13_8_99 (13) were downloaded and processed with mothur by trimming to the 
V4 region and clustered de novo with OptiClust (6). The preprocessed data were 
fit to the clustered reference data using OptiFit with the method open to allow 
any sequences that did not map to the existing reference clusters to form new 
OTUs. The data were then subsampled to 10,000 reads and any novel OTUs from 
the test set were removed. The dataset was then split into two sets where 80% 
of the samples were assigned to the training set and 20% to the testing set. 
This process was repeated for each of the 100 splits resulting in 100 training and 
testing datasets.

3. VSEARCH Greengenes: Preprocessed data were clustered using VSEARCH v2.15.2 
(7) directly to unprocessed Greengenes 97% OTU reference alignment consistent 
with how VSEARCH is typically used by the QIIME2 software for reference-based 
clustering (8). The data were then subsampled to 10,000 reads and any novel OTUs 
from the test set were removed. The dataset was then split into two sets where 
80% of the samples were assigned to the training set and 20% to the testing set. 
This process was repeated for each of the 100 splits resulting in 100 training and 
testing datasets.

De novo workflows

1. OptiClust de novo: All the preprocessed data were clustered together with 
OptiClust (6) to generate OTUs. The data were subsampled to 10,000 reads per 
sample, and the resulting abundance tables were split into the training and testing 
sets. The process was repeated for each of the 100 splits resulting in 100 training 
and testing datasets.

2. VSEARCH de novo: All the preprocessed data were clustered using VSEARCH 
v2.15.2 (7) with 97% identity and then subsampled to 10,000 reads per sample. 
The process was repeated for each of the 100 splits resulting in 100 training and 
testing datasets for both workflows.
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Machine learning

A random forest model was trained with the R package mikrompl (v 1.2.0) (14) to 
predict the diagnosis (SRN or normal) for the samples in the test set for each data 
split. The training set was preprocessed to normalize OTU counts (scale and center), 
collapse correlated OTUs, and remove OTUs with zero variance. The preprocessing from 
the training set was then applied to the test set. Any OTUs in the test set that were not in 
the training set were removed. P-values comparing model performance were calculated 
as previously described (15). The averaged receiver operating characteristic (ROC) curves 
were plotted by taking the average and standard deviation of the sensitivity at each 
specificity value.

Code availability

The analysis workflow was implemented in Snakemake (16). Scripts for analysis were 
written in R (17) and GNU bash (18). The software used includes mothur v1.47.0 (10), 
VSEARCH v2.15.2 (7), RStudio (19), the Tidyverse metapackage (20), R Markdown (21), the 
SRA toolkit (22), and conda (23).
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DATA AVAILABILITY

The complete workflow and supporting files required to reproduce this study are 
available at https://github.com/SchlossLab/Armour_OptiFitGLNE_mSphere_2023.
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